Ian D. Davies
Australian National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ian D. Davies.
Landscape Ecology | 2006
Geoffrey J. Cary; Robert E. Keane; Robert H. Gardner; Sandra Lavorel; Mike D. Flannigan; Ian D. Davies; Chao Li; James M. Lenihan; T. Scott Rupp; Florent Mouillot
The purpose of this study was to compare the sensitivity of modelled area burned to environmental factors across a range of independently-developed landscape-fire-succession models. The sensitivity of area burned to variation in four factors, namely terrain (flat, undulating and mountainous), fuel pattern (finely and coarsely clumped), climate (observed, warmer & wetter, and warmer & drier) and weather (year-to-year variability) was determined for four existing landscape-fire-succession models (EMBYR, FIRESCAPE, LANDSUM and SEM-LAND) and a new model implemented in the LAMOS modelling shell (LAMOS(DS)). Sensitivity was measured as the variance in area burned explained by each of the four factors, and all of the interactions amongst them, in a standard generalised linear modelling analysis. Modelled area burned was most sensitive to climate and variation in weather, with four models sensitive to each of these factors and three models sensitive to their interaction. Models generally exhibited a trend of increasing area burned from observed, through warmer and wetter, to warmer and drier climates with a 23-fold increase in area burned, on average, from the observed to the warmer, drier climate. Area burned was sensitive to terrain for FIRESCAPE and fuel pattern for EMBYR. These results demonstrate that the models are generally more sensitive to variation in climate and weather as compared with terrain complexity and fuel pattern, although the sensitivity to these latter factors in a small number of models demonstrates the importance of representing key processes. The models that represented fire ignition and spread in a relatively complex fashion were more sensitive to changes in all four factors because they explicitly simulate the processes that link these factors to area burned.
Ecological Applications | 2007
Fabien Quétier; Sandra Lavorel; Wilfried Thuiller; Ian D. Davies
Evidence is accumulating that the continued provision of essential ecosystem services is vulnerable to land-use change. Yet, we lack a strong scientific basis for this vulnerability as the processes that drive ecosystem-service delivery often remain unclear. In this paper, we use plant traits to assess ecosystem-service sensitivity to land-use change in subalpine grasslands. We use a trait-based plant classification (plant functional types, PFTs) in a landscape modeling platform to model community dynamics under contrasting but internally consistent land-use change scenarios. We then use predictive models of relevant ecosystem attributes, based on quantitative plant traits, to make projections of ecosystem-service delivery. We show that plant traits and PFTs are effective predictors of relevant ecosystem attributes for a range of ecosystem services including provisioning (fodder), cultural (land stewardship), regulating (landslide and avalanche risk), and supporting services (plant diversity). By analyzing the relative effects of the physical environment and land use on relevant ecosystem attributes, we also show that these ecosystem services are most sensitive to changes in grassland management, supporting current agri-environmental policies aimed at maintaining mowing of subalpine grasslands in Europe.
Trends in Ecology and Evolution | 2013
Sam C. Banks; Geoffrey J. Cary; Annabel L. Smith; Ian D. Davies; Don A. Driscoll; A. Malcolm Gill; David B. Lindenmayer; Rod Peakall
Environmental disturbance underpins the dynamics and diversity of many of the ecosystems of the world, yet its influence on the patterns and distribution of genetic diversity is poorly appreciated. We argue here that disturbance history may be the major driver that shapes patterns of genetic diversity in many natural populations. We outline how disturbance influences genetic diversity through changes in both selective processes and demographically driven, selectively neutral processes. Our review highlights the opportunities and challenges presented by genetic approaches, such as landscape genomics, for better understanding and predicting the demographic and evolutionary responses of natural populations to disturbance. Developing this understanding is now critical because disturbance regimes are changing rapidly in a human-modified world.
International Journal of Wildland Fire | 2009
Geoffrey J. Cary; Mike D. Flannigan; Robert E. Keane; Ross A. Bradstock; Ian D. Davies; James M. Lenihan; Cheng Li; K. A. Logan; Russell A. Parsons
The behaviour of five landscape fire models (CAFE, FIRESCAPE, LAMOS(HS), LANDSUM and SEM- LAND) was compared in a standardised modelling experiment. The importance of fuel management approach, fuel management effort, ignition management effort and weather in determining variation in area burned and number of edge pixels burned (a measure of potential impact on assets adjacent to fire-prone landscapes) was quantified for a standardised modelling landscape. Importance was measured as the proportion of variation in area or edge pixels burned explained by each factor and all interactions among them. Weather and ignition management were consistently more important for explaining variation in area burned than fuel management approach and effort, which were found to be statistically unimportant. For the number of edge pixels burned, weather and ignition management were generally more important than fuel management approach and effort. Increased ignition management effort resulted in decreased area burned in all models and decreased number of edge pixels burned in three models. The findings demonstrate that year-to-year variation in weather and the success of ignition management consistently prevail over the effects of fuel management on area burned in a range of modelled ecosystems.
Landscape Ecology | 2003
Sara A. O. Cousins; Sandra Lavorel; Ian D. Davies
Semi-natural grasslands in Sweden are threatened by land-use change and lack of management with attendant risk to their biodiversity. We present a model to explore the effects of grazing frequency and intensity on plant species persistence, and the relative effects of grassland size and pattern. We used a landscape modelling platform, LAMOS (LAndscape MOdelling Shell), to design a landscape model of vegetation dynamics incorporating the effects of local succession, dispersal and grazing disturbance. Five plant functional groups (PFG), representing various combinations of persistence and dispersal character, light requirements and disturbance responses, were defined to model species dynamics. Based on old cadastral maps three different landscapes were designed representing specific time-layers, i.e., a historical (17th to 18th century), a pre-modern (1940s) and a present-day landscape. Simulations showed that a threshold was crossed when grasslands decreased in area to about 10–30% of the modelled area, and as a consequence the biomass of grassland-specific PFGs was strongly reduced. These competition sensitive groups did not persist in the model even with intense grazing in the present-day landscape, where grasslands occupy 11% of the total area. However, all grassland species would have been able to persist in the historical landscape, where grasslands occupied 59% of the total area, even without grazing. Our results suggest that continuous but low-intensity grazing is more positive for grassland PFGs than discontinuous but highly intensive grazing. This effect was particularly strong when the frequency and/or intensity of grazing dropped below a threshold of 20%. Simulations using three landscape maps designed to explore effects of further fragmentation and habitat loss showed that the spatial pattern of remaining grasslands is important for the persistence of grassland-specific PFG. The model presented here is an advance towards more realistic grazing models to explore the effects of prescribed grazing and landscape fragmentation on the persistence species or plant functional groups.
Journal of Environmental Management | 2012
Ross A. Bradstock; Geoffrey J. Cary; Ian D. Davies; David B. Lindenmayer; Owen F. Price; Richard J. Williams
Wildfires pose significant risks to people and human infrastructure worldwide. The treatment of fuel in landscapes may alter these risks but the magnitude of this effect on risk is poorly understood. Evidence from Australian Eucalyptus forests suggests that mitigation of risk using prescribed burning as a fuel treatment is partial because weather and fuel dynamics are conducive to regular high intensity fires. We further examine the response of risk to treatment in eucalypt forests using landscape simulation modelling. We model how five key measures of wildfire activity that govern risk to people and property may respond to variations in rate and spatial pattern of prescribed fire. We then model effects of predicted climate change (2050 scenarios) to determine how the response of risk to treatment is likely to be altered in the future. The results indicate that a halving of risk to people and property in these forests is likely to require treatment rates of 7-10% of the area of the landscape per annum. Projections of 2050 weather conditions under climate change further substantially diminished the effect of rate of treatment. A large increase in rates of treatment (i.e. circa. 50% over current levels) would be required to counteract these effects of climate change. Such levels of prescribed burning are unlikely to be financially feasible across eucalypt dominated vegetation in south eastern Australia. Despite policy imperatives to expand fuel treatment, a reduction rather than an elimination of risk will result. Multi-faceted strategies will therefore be required for the management of risk.
Functional Plant Biology | 2004
Stephen H. Roxburgh; Damian Barrett; Sandra L. Berry; John Carter; Ian D. Davies; Roger M. Gifford; Miko U. F. Kirschbaum; Bevan P. McBeth; Ian R. Noble; William Parton; M. R. Raupach; Micahel L. Roderick
Net primary production links the biosphere and the climate system through the global cycling of carbon, water and nutrients. Accurate quantification of net primary productivity (NPP) is therefore critical in understanding the response of the worlds ecosystems to global climate change, and how changes in ecosystems might themselves feed back to the climate system.
Journal of Applied Ecology | 2010
Paul R. Armsworth; Anastasia N. Armsworth; Natalie Compton; Phil Cottle; Ian D. Davies; Bridget A. Emmett; Vanessa Fandrich; Matthew Foote; Kevin J. Gaston; Phil Gardiner; Tim Hess; Nick Horsley; Natasha Leaver; Trevor Maynard; Delia Shannon
Summary 1. Businesses have an unrivalled ability to mobilize human, physical and financial capital, often manage large land holdings, and draw on resources and supply products that impact a wide array of ecosystems. Businesses therefore have the potential to make a substantial contribution to arresting declines in biodiversity and ecosystem services. To realize this potential, businesses require support from researchers in applied ecology to inform how they measure and manage their impacts on, and opportunities presented to them by, biodiversity and ecosystem services. 2. We reviewed papers in leading applied ecology journals to assess the research contribution from existing collaborations involving businesses. We reviewed applications to, and grants funded by, the UK’s Natural Environment Research Council for evidence of public investment in such collaborations. To scope opportunities for expanding collaborations with businesses, we conducted workshops with three sectors (mining and quarrying, insurance and manufacturing) in which participants identified exemplar ecological research questions of interest to their sector. 3. Ten to fifteen per cent of primary research papers in Journal of Applied Ecology and Ecological Applications evidenced business involvement, mostly focusing on traditional rural industries (farming, fisheries and forestry). The review of UK research council funding found that 35% of applications mentioned business engagement, while only 1% of awarded grants met stricter criteria of direct business involvement. 4. Some questions identified in the workshops aim to reduce costs from businesses’ impacts on the environment and others to allow businesses to exploit new opportunities. Some questions are designed to inform long‐term planning undertaken by businesses, but others would have more immediate commercial applications. Finally, some research questions are designed to streamline and make more effective those environmental policies that affect businesses. 5. Business participants were forward‐looking regarding ecological questions and research. For example, representatives from mining and quarrying companies emphasized the need to move beyond biodiversity to consider how ecosystems function, while those from the insurance sector stressed the importance of ecology researchers entering into new types of interdisciplinary collaboration. 6. Synthesis and applications. Businesses from a variety of sectors demonstrated a clear interest in managing their impacts on, and exploiting opportunities created by, ecosystem services and biodiversity. To achieve this, businesses are asking diverse ecological research questions, but publications in leading applied ecology journals and research council funding reveal limited evidence of direct engagement with businesses. This represents a missed opportunity for ecological research findings to see more widespread application.
Ecosystems | 2011
Jacques Gignoux; Ian D. Davies; Shayne Flint; Jean-Daniel Zucker
Since its inception, the ecosystem concept has been widely used in ecology and is increasingly finding application within other disciplines. In more recent times within ecology, however, it has been suggested the term is now obsolete. We argue that three problems lie at the heart of these criticisms, namely the physics–biology duality problem, the boundary problem and the abstraction problem. The physics–biology duality problem (how to grapple with systems that follow the laws of both physics and biology) is addressed by modern computer science techniques originating from simulation and software engineering. The boundary problem (how to find the limits of an ecosystem in the real world) is solved by a powerful assumption of Tansley, that the ecosystem is an ad hoc construct on the part of an observer for a particular purpose. The abstraction problem (can models of an ecosystem at different levels of detail produce the same outcomes) has no general solution, but can be improved upon by using scaling techniques and standards to facilitate model comparisons. We demonstrate that Tansley’s (Ecology 16:284–307, 1935) definition is still relevant to modern ecology almost as is. Tansley’s ecosystem is a multi-disciplinary, recursive, scale-independent and observer-dependent object. These properties closely match those of complex systems as defined in mathematics and computer sciences. From Tansley’s definition, we propose a formal description of the concepts and relations linked to the ecosystem definition, as an ontology that can serve as a basis for future discussion, modelling and conceptual work.
Ecology and Evolution | 2016
Ian D. Davies; Geoffrey J. Cary; Erin L. Landguth; David B. Lindenmayer; Sam C. Banks
Abstract Exploring interactions between ecological disturbance, species’ abundances and community composition provides critical insights for ecological dynamics. While disturbance is also potentially an important driver of landscape genetic patterns, the mechanisms by which these patterns may arise by selective and neutral processes are not well‐understood. We used simulation to evaluate the relative importance of disturbance regime components, and their interaction with demographic and dispersal processes, on the distribution of genetic diversity across landscapes. We investigated genetic impacts of variation in key components of disturbance regimes and spatial patterns that are likely to respond to climate change and land management, including disturbance size, frequency, and severity. The influence of disturbance was mediated by dispersal distance and, to a limited extent, by birth rate. Nevertheless, all three disturbance regime components strongly influenced spatial and temporal patterns of genetic diversity within subpopulations, and were associated with changes in genetic structure. Furthermore, disturbance‐induced changes in temporal population dynamics and the spatial distribution of populations across the landscape resulted in disrupted isolation by distance patterns among populations. Our results show that forecast changes in disturbance regimes have the potential to cause major changes to the distribution of genetic diversity within and among populations. We highlight likely scenarios under which future changes to disturbance size, severity, or frequency will have the strongest impacts on population genetic patterns. In addition, our results have implications for the inference of biological processes from genetic data, because the effects of dispersal on genetic patterns were strongly mediated by disturbance regimes.