Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian F. Connerton is active.

Publication


Featured researches published by Ian F. Connerton.


Applied Microbiology and Biotechnology | 2004

Functional classification of the microbial feruloyl esterases

Valerie F. Crepin; Craig B. Faulds; Ian F. Connerton

Abstract Feruloyl esterases have potential uses over a broad range of applications in the agri-food industries. In recent years, the number of microbial feruloyl esterase activities reported has increased and, in parallel, even more related protein sequences may be discerned in the growing genome databases. Based on substrate utilisation data and supported by primary sequence identity, four sub-classes have been characterised and termed type-A, B, C and D. The proposed sub-classification scheme is discussed in terms of the evolutionary relationships existing between carbohydrate esterases.


Applied and Environmental Microbiology | 2005

Bacteriophage Therapy To Reduce Campylobacter jejuni Colonization of Broiler Chickens

C. M. Loc Carrillo; Robert J. Atterbury; Ayman El-Shibiny; Phillippa L. Connerton; E. Dillon; Andrew E Scott; Ian F. Connerton

ABSTRACT Colonization of broiler chickens by the enteric pathogen Campylobacter jejuni is widespread and difficult to prevent. Bacteriophage therapy is one possible means by which this colonization could be controlled, thus limiting the entry of campylobacters into the human food chain. Prior to evaluating the efficacy of phage therapy, experimental models of Campylobacter colonization of broiler chickens were established by using low-passage C. jejuni isolates HPC5 and GIIC8 from United Kingdom broiler flocks. The screening of 53 lytic bacteriophage isolates against a panel of 50 Campylobacter isolates from broiler chickens and 80 strains isolated after human infection identified two phage candidates with broad host lysis. These phages, CP8 and CP34, were orally administered in antacid suspension, at different dosages, to 25-day-old broiler chickens experimentally colonized with the C. jejuni broiler isolates. Phage treatment of C. jejuni-colonized birds resulted in Campylobacter counts falling between 0.5 and 5 log10 CFU/g of cecal contents compared to untreated controls over a 5-day period postadministration. These reductions were dependent on the phage-Campylobacter combination, the dose of phage applied, and the time elapsed after administration. Campylobacters resistant to bacteriophage infection were recovered from phage-treated chickens at a frequency of <4%. These resistant types were compromised in their ability to colonize experimental chickens and rapidly reverted to a phage-sensitive phenotype in vivo. The selection of appropriate phage and their dose optimization are key elements for the success of phage therapy to reduce campylobacters in broiler chickens.


Molecular Microbiology | 1999

Binding of intimin from enteropathogenic Escherichia coli to Tir and to host cells

Elizabeth L. Hartland; Miranda Batchelor; Robin M. Delahay; Christine Hale; Stephen Matthews; Gordon Dougan; Stuart Knutton; Ian F. Connerton; Gad Frankel

Enteropathogenic Escherichia coli (EPEC) induce characteristic attaching and effacing (A/E) lesions on epithelial cells. This event is mediated, in part, by binding of the bacterial outer membrane protein, intimin, to a second EPEC protein, Tir (translocated intimin receptor), which is exported by the bacteria and integrated into the host cell plasma membrane. In this study, we have localized the intimin‐binding domain of Tir to a central 107‐amino‐acid region, designated Tir‐M. We provide evidence that both the amino‐ and carboxy‐termini of Tir are located within the host cell. In addition, using immunogold labelling electron microscopy, we have confirmed that intimin can bind independently to host cells even in the absence of Tir. This Tir‐independent interaction and the ability of EPEC to induce A/E lesions requires an intact lectin‐like module residing at the carboxy‐terminus of the intimin polypeptide. Using the yeast two‐hybrid system and gel overlays, we show that intimin can bind both Tir and Tir‐M even when the lectin‐like domain is disrupted. These data provide strong evidence that intimin interacts not only with Tir but also in a lectin‐like manner with a host cell intimin receptor.


Applied and Environmental Microbiology | 2003

Application of Host-Specific Bacteriophages to the Surface of Chicken Skin Leads to a Reduction in Recovery of Campylobacter jejuni

Robert J. Atterbury; Phillippa L. Connerton; Christine E. R. Dodd; Catherine E. D. Rees; Ian F. Connerton

ABSTRACT Retail poultry products are widely purported as the major infection vehicle for human campylobacteriosis. Numerous intervention strategies have sought to reduce Campylobacter contamination on broiler carcasses in the abattoir. This study reports the efficacy of bacteriophage in reducing the number of recoverable Campylobacter jejuni cells on artificially contaminated chicken skin.


Structure | 1997

Two crystal structures of pectin lyase A from Aspergillus reveal a pH driven conformational change and striking divergence in the substrate-binding clefts of pectin and pectate lyases.

Olga Mayans; Mandy Scott; Ian F. Connerton; T. Gravesen; J Benen; J Visser; Richard W. Pickersgill; John Jenkins

BACKGROUND Microbial pectin and pectate lyases are virulence factors that degrade the pectic components of the plant cell wall. The homogalacturan backbone of pectin varies in its degree of methylation from the highly methylated and relatively hydrophobic form known as pectin, to the fully demethylated and highly charged form known as pectate. Methylated and demethylated regions of pectin are cleaved by pectin lyase and calcium-dependent pectate lyases, respectively. Protein engineering of lyases specific for particular patterns of methylation, will yield modified pectins of high value to the food and pharmaceutical industries. RESULTS The crystal structures of pectin lyase A from two strains of Aspergillus niger, N400 and 4M-147, have been determined at pH 6.5 (2.4 A resolution) and pH 8.5 (1.93 A resolution), respectively. The structures were determined by a combination of molecular replacement, multiple isomorphous replacement and intercrystal averaging. Pectin lyase A folds into a parallel beta helix and shares many of the structural features of pectate lyases, despite no more than 17% sequence identity after pairwise structure-based alignment. These shared structural features include amino acid stacks and the asparagine ladder. However, the differences in the substrate-binding clefts of these two enzymes are striking. In pectin lyase A, the cleft is dominated by aromatic residues and is enveloped by negative electrostatic potential. In pectate lyases, this cleft is rich in charged residues and contains an elongated ribbon of positive potential when Ca2+ is bound. The major difference between the two pectin lyase A structures from the two strains is in the conformation of the loop formed by residues 182-187. These observed differences are due to the different pH values of crystallization. CONCLUSIONS The substrate-binding clefts and catalytic machinery of pectin and pectate lyases have diverged significantly. Specificity is dictated by both the nature of the protein-carbohydrate interaction and long-range electrostatic forces. Three potential catalytic residues have been identified in pectin lyase, two of these are common to pectate lyases. Pectin lyase A does not bind Ca2+ but an arginine residue is found in an equivalent position to the Ca2+ ion in pectate lyase, suggesting a similar role in catalysis. The activity of pectin lyase A is pH -dependent with an optimum activity at pH 5.5. The activity drops above pH 7.0 due to a conformational change at the binding cleft, triggered by the proximity of two buried aspartate residues.


Nature Structural & Molecular Biology | 1999

Structure of the cell-adhesion fragment of intimin from enteropathogenic Escherichia coli.

Geoff Kelly; Sunil Prasannan; Sarah Daniell; Keiran Fleming; Gad Frankel; Gordon Dougan; Ian F. Connerton; Stephen Matthews

Enteropathogenic Escherichia coli (EPEC) induce gross cytoskeletal rearrangement within epithelial cells, immediately beneath the attached bacterium. The C-terminal 280 amino acid residues of intimin (Int280; 30.1 kDa), a bacterial cell-adhesion molecule, mediate the intimate bacterial host–cell interaction. Recently, interest in this process has been stimulated by the discovery that the bacterial intimin receptor protein (Tir) is translocated into the host cell membrane, phosphorylated, and after binding intimin triggers the intimate attachment. Using multidimensional nuclear magnetic resonance (NMR) and combining perdeuteration with site-specific protonation of methyl groups, we have determined the global fold of Int280. This represents one of the largest, non-oligomeric protein structures to be determined by NMR that has not been previously resolved by X-ray crystallography. Int280 comprises three domains; two immunoglobulin-like domains and a C-type lectin-like module, which define a new family of bacterial adhesion molecules. These findings also imply that carbohydrate recognition may be important in intimin-mediated cell adhesion.


Structure | 1994

Structure of the catalytic core of the family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites.

Gillian W. Harris; John Jenkins; Ian F. Connerton; Nicola J. Cummings; Leila Lo Leggio; Mandy Scott; Geoffrey P. Hazlewood; Judith I. Laurie; Harry J. Gilbert; Richard W. Pickersgill

BACKGROUND Sequence alignment suggests that xylanases evolved from two ancestral proteins and therefore can be grouped into two families, designated F and G. Family F enzymes show no sequence similarity with any known structure and their architecture is unknown. Studies of an inactive enzyme-substrate complex will help to elucidate the structural basis of binding and catalysis in the family F xylanases. RESULTS We have therefore determined the crystal structure of the catalytic domain of a family F enzyme, Pseudomonas fluorescens subsp. cellulosa xylanase A, at 2.5 A resolution and a crystallographic R-factor of 0.20. The structure was solved using an engineered catalytic core in which the nucleophilic glutamate was replaced by a cysteine. As expected, this yielded both high-quality mercurial derivatives and an inactive enzyme which enabled the preparation of the inactive enzyme-substrate complex in the crystal. We show that family F xylanases are eight-fold alpha/beta-barrels (TIM barrels) with two active-site glutamates, one of which is the nucleophile and the other the acid-base. Xylopentaose binds to five subsites A-E with the cleaved bond between subsites D and E. Ca2+ binding, remote from the active-site glutamates, stabilizes the structure and may be involved in the binding of extended substrates. CONCLUSIONS The architecture of P. fluorescens subsp. cellulosa has been determined crystallographically to be a commonly occurring enzyme fold, the eight-fold alpha/beta-barrel. Xylopentaose binds across the carboxy-terminal end of the alpha/beta-barrel in an active-site cleft which contains the two catalytic glutamates.


Applied and Environmental Microbiology | 2003

Isolation and Characterization of Campylobacter Bacteriophages from Retail Poultry

Robert J. Atterbury; Phillippa L. Connerton; Christine E. R. Dodd; Catherine E. D. Rees; Ian F. Connerton

ABSTRACT The ability of phages to survive processing is an important aspect of their potential use in the biocontrol of Campylobacter in poultry production. To this end, we have developed a procedure to recover Campylobacter bacteriophages from chilled and frozen retail poultry and have validated the sensitivity of the method by using a characterized Campylobacter phage (i.e., NCTC 12674). By using this method, we have shown that Campylobacter phages can survive on retail chicken under commercial storage conditions. Retail chicken portions purchased in the United Kingdom were screened for the presence of endogenous Campylobacter phages. Thirty-four Campylobacter bacteriophages were isolated from 300 chilled retail chicken portions, but none could be recovered from 150 frozen chicken portions. The phage isolates were characterized according to their lytic profiles, morphology, and genome size. The free-range products were significantly more likely to harbor phages (P < 0.001 by single-factor analysis of variance) than were standard or economy products. This study demonstrates that Campylobacter bacteriophages, along with their hosts, can survive commercial poultry processing procedures and that the phages exhibited a wide range of recovery rates from chicken skin stored at 4°C.


Applied and Environmental Microbiology | 2011

Biosecurity-Based Interventions and Strategies To Reduce Campylobacter spp. on Poultry Farms

Diane G. Newell; Karen T Elvers; Dörte Döpfer; I Hansson; P Jones; S James; J Gittins; Norman J. Stern; R Davies; Ian F. Connerton; D Pearson; G Salvat; Vivien Allen

ABSTRACT The prevention and control of Campylobacter colonization of poultry flocks are important public health strategies for the control of human campylobacteriosis. A critical review of the literature on interventions to control Campylobacter in poultry on farms was undertaken using a systematic approach. Although the focus of the review was on aspects appropriate to the United Kingdom poultry industry, the research reviewed was gathered from worldwide literature. Multiple electronic databases were employed to search the literature, in any language, from 1980 to September 2008. A primary set of 4,316 references was identified and scanned, using specific agreed-upon criteria, to select relevant references related to biosecurity-based interventions. The final library comprised 173 references. Identification of the sources of Campylobacter in poultry flocks was required to inform the development of targeted interventions to disrupt transmission routes. The approach used generally involved risk factor-based surveys related to culture-positive or -negative flocks, usually combined with a structured questionnaire. In addition, some studies, either in combination or independently, undertook intervention trials. Many of these studies were compromised by poor design, sampling, and statistical analysis. The evidence for each potential source and route of transmission on the poultry farm was reviewed critically, and the options for intervention were considered. The review concluded that, in most instances, biosecurity on conventional broiler farms can be enhanced and this should contribute to the reduction of flock colonization. However, complementary, non-biosecurity-based approaches will also be required in the future to maximize the reduction of Campylobacter-positive flocks at the farm level.


PLOS Pathogens | 2009

Quantitative models of in vitro bacteriophage-host dynamics and their application to phage therapy.

Benjamin J Cairns; Andrew R. Timms; Vincent A. A. Jansen; Ian F. Connerton; Robert J. H. Payne

Phage therapy is the use of bacteriophages as antimicrobial agents for the control of pathogenic and other problem bacteria. It has previously been argued that successful application of phage therapy requires a good understanding of the non-linear kinetics of phage–bacteria interactions. Here we combine experimental and modelling approaches to make a detailed examination of such kinetics for the important food-borne pathogen Campylobacter jejuni and a suitable virulent phage in an in vitro system. Phage-insensitive populations of C. jejuni arise readily, and as far as we are aware this is the first phage therapy study to test, against in vitro data, models for phage–bacteria interactions incorporating phage-insensitive or resistant bacteria. We find that even an apparently simplistic model fits the data surprisingly well, and we confirm that the so-called inundation and proliferation thresholds are likely to be of considerable practical importance to phage therapy. We fit the model to time series data in order to estimate thresholds and rate constants directly. A comparison of the fit for each culture reveals density-dependent features of phage infectivity that are worthy of further investigation. Our results illustrate how insight from empirical studies can be greatly enhanced by the use of kinetic models: such combined studies of in vitro systems are likely to be an essential precursor to building a meaningful picture of the kinetic properties of in vivo phage therapy.

Collaboration


Dive into the Ian F. Connerton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gad Frankel

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Richard W. Pickersgill

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ayman El-Shibiny

University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge