Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian H. Gilbert is active.

Publication


Featured researches published by Ian H. Gilbert.


Nature | 2012

Automated design of ligands to polypharmacological profiles

Jérémy Besnard; Gian Filippo Ruda; Vincent Setola; Keren Abecassis; Ramona M. Rodriguiz; Xi Ping Huang; Suzanne Norval; Maria F. Sassano; Antony I. Shin; Lauren A. Webster; Frederick R. C. Simeons; Laste Stojanovski; Annik Prat; Nabil G. Seidah; Daniel B. Constam; G. Richard Bickerton; Kevin D. Read; William C. Wetsel; Ian H. Gilbert; Bryan L. Roth; Andrew L. Hopkins

The clinical efficacy and safety of a drug is determined by its activity profile across many proteins in the proteome. However, designing drugs with a specific multi-target profile is both complex and difficult. Therefore methods to design drugs rationally a priori against profiles of several proteins would have immense value in drug discovery. Here we describe a new approach for the automated design of ligands against profiles of multiple drug targets. The method is demonstrated by the evolution of an approved acetylcholinesterase inhibitor drug into brain-penetrable ligands with either specific polypharmacology or exquisite selectivity profiles for G-protein-coupled receptors. Overall, 800 ligand–target predictions of prospectively designed ligands were tested experimentally, of which 75% were confirmed to be correct. We also demonstrate target engagement in vivo. The approach can be a useful source of drug leads when multi-target profiles are required to achieve either selectivity over other drug targets or a desired polypharmacology.


Nature | 2010

N-myristoyltransferase inhibitors as new leads to treat sleeping sickness.

Julie A. Frearson; Stephen Brand; Stuart P. McElroy; Laura A. T. Cleghorn; Ondrej Smid; Laste Stojanovski; Helen P. Price; M. Lucia S. Güther; Leah S. Torrie; David A. Robinson; Irene Hallyburton; Chidochangu P. Mpamhanga; James A. Brannigan; Anthony J. Wilkinson; Michael R. Hodgkinson; Raymond Hui; Wei Qiu; Olawale G. Raimi; Daan M. F. van Aalten; Ruth Brenk; Ian H. Gilbert; Kevin D. Read; Alan H. Fairlamb; Michael A. J. Ferguson; Deborah F. Smith; Paul G. Wyatt

African sleeping sickness or human African trypanosomiasis, caused by Trypanosoma brucei spp., is responsible for ∼30,000 deaths each year. Available treatments for this disease are poor, with unacceptable efficacy and safety profiles, particularly in the late stage of the disease when the parasite has infected the central nervous system. Here we report the validation of a molecular target and the discovery of associated lead compounds with the potential to address this lack of suitable treatments. Inhibition of this target—T. brucei N-myristoyltransferase—leads to rapid killing of trypanosomes both in vitro and in vivo and cures trypanosomiasis in mice. These high-affinity inhibitors bind into the peptide substrate pocket of the enzyme and inhibit protein N-myristoylation in trypanosomes. The compounds identified have promising pharmaceutical properties and represent an opportunity to develop oral drugs to treat this devastating disease. Our studies validate T. brucei N-myristoyltransferase as a promising therapeutic target for human African trypanosomiasis.


Nature | 2015

A novel multiple-stage antimalarial agent that inhibits protein synthesis

Beatriz Baragaña; Irene Hallyburton; Marcus C. S. Lee; Neil R. Norcross; Raffaella Grimaldi; Thomas D. Otto; William R. Proto; Andrew M. Blagborough; Stephan Meister; Grennady Wirjanata; Andrea Ruecker; Leanna M. Upton; Tara S. Abraham; Mariana Justino de Almeida; Anupam Pradhan; Achim Porzelle; María Santos Martínez; Judith M. Bolscher; Andrew Woodland; Suzanne Norval; Fabio Zuccotto; John Thomas; Frederick R. C. Simeons; Laste Stojanovski; Maria Osuna-Cabello; Patrick M. Brock; Thomas S. Churcher; Katarzyna A. Sala; Sara E. Zakutansky; María Belén Jiménez-Díaz

There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.


Journal of Medicinal Chemistry | 2005

Design and Synthesis of a Series of Melamine-based Nitroheterocycles with Activity against Trypanosomatid Parasites

Alessandro Baliani; Gj Bueno; Mhairi Stewart; Yardley; Reto Brun; Michael P. Barrett; Ian H. Gilbert

The parasites that give rise to human African trypanosomiasis (HAT) are auxotrophs for various nutrients from the human host, including purines. They have specialist nucleoside transporters to import these metabolites. In addition to uptake of purine nucleobases and purine nucleosides, one of these transporters, the P2 transporter, can carry melamine derivatives; these derivatives are not substrates for the corresponding mammalian transporters. In this paper, we report the coupling of the melamine moiety to selected nitro heterocycles with the aim of selectively delivering these compounds to the parasites. Some compounds prepared have similar in vitro trypanocidal activities as melarsoprol, the principal drug used against late-stage HAT, with 50% growth inhibitory concentrations in the submicromolar range. Selected compounds were also evaluated in vivo in rodent models infected with Trypanosoma brucei brucei and T. brucei rhodesiense and showed pronounced activity and in two cases were curative without overt signs of toxicity. Compounds were also tested against other trypanosomatid pathogens, Leishmania donovani and Trypanosoma cruzi, and significant activity in vitro was noted for T. cruzi against which various nitro heterocycles are already registered for use.


Journal of General Virology | 2000

Screening Congo Red and its analogues for their ability to prevent the formation of PrP-res in scrapie-infected cells.

Helene Rudyk; Snezana Vasiljevic; Ruth M. Hennion; Christopher R. Birkett; James Hope; Ian H. Gilbert

Transmissible spongiform encephalopathies (TSEs) are incurable, fatal diseases. The dye Congo Red (CR) can cure cells infected with agents of the sheep TSE, scrapie, but is not used as a therapeutic or prophylactic agent in vivo, as its effects are small, possibly due to low blood-brain barrier permeability, and complicated by its intrinsic carcinogenicity. In this paper, the development is described of a structure-activity profile for CR by testing a series of analogues of this dye for their ability to inhibit the formation of the protease-resistant prion protein, PrP-res, a molecular marker for the infectious agent, in the scrapie-infected, SMB cell line. It was found that the central benzidine unit in CR, which gives the molecule potential carcinogenicity, can be replaced by other, less toxic moieties and that the sulphonate groups on the core molecule can be replaced by carboxylic acids, which should improve the brain permeability of these compounds. However, detailed dose-response curves were generated for several derivatives and they revealed that, while some compounds showed inhibition of PrP-res accumulation at high concentrations, at low concentrations they actually stimulated levels of PrP-res above control values.


Antimicrobial Agents and Chemotherapy | 2004

Novel Azasterols as Potential Agents for Treatment of Leishmaniasis and Trypanosomiasis

Silvia Orenes Lorente; Juliany Cola Fernandes Rodrigues; C. Jimenez; Miranda Joyce-Menekse; Carlos Rodrigues; Simon L. Croft; Vanessa Yardley; Kate de Luca-Fradley; Luis M. Ruiz-Pérez; Julio A. Urbina; Wanderley de Souza; Dolores Gonzalez Pacanowska; Ian H. Gilbert

ABSTRACT This paper describes the design and evaluation of novel azasterols as potential compounds for the treatment of leishmaniasis and other diseases caused by trypanosomatid parasites. Azasterols are a known class of (S)-adenosyl-l-methionine: Δ24-sterol methyltransferase(24-SMT) inhibitors in fungi, plants, and some parasitic protozoa. The compounds prepared showed activity at micromolar and nanomolar concentrations when tested against Leishmania spp. and Trypanosoma spp. The enzymatic and sterol composition studies indicated that the most active compounds acted by inhibiting 24-SMT. The role of the free hydroxyl group at position 3 of the sterol nucleus was also probed. When an acetate was attached to the 3β-OH, the compounds did not inhibit the enzyme but had an effect on parasite growth and the levels of sterols in the parasite, suggesting that the acetate group was removed in the organism. Thus, an acetate group on the 3β-OH may have application as a prodrug. However, there may be an additional mode(s) of action for these acetate derivatives. These compounds were shown to have ultrastructural effects on Leishmania amazonensis promastigote membranes, including the plasma membrane, the mitochondrial membrane, and the endoplasmic reticulum. The compounds were also found to be active against the bloodstream form (trypomastigotes) of Trypanosoma brucei rhodesiense, a causative agent of African trypanosomiasis.


Journal of Medicinal Chemistry | 2012

Discovery of a novel class of orally active trypanocidal N-myristoyltransferase inhibitors.

Stephen Brand; Laura A. T. Cleghorn; Stuart P. McElroy; David A. Robinson; Victoria Smith; Irene Hallyburton; Justin R. Harrison; Neil R. Norcross; Daniel Spinks; Tracy Bayliss; Suzanne Norval; Laste Stojanovski; Leah S. Torrie; Julie A. Frearson; Ruth Brenk; Alan H. Fairlamb; Michael A. J. Ferguson; Kevin D. Read; Paul G. Wyatt; Ian H. Gilbert

N-Myristoyltransferase (NMT) represents a promising drug target for human African trypanosomiasis (HAT), which is caused by the parasitic protozoa Trypanosoma brucei. We report the optimization of a high throughput screening hit (1) to give a lead molecule DDD85646 (63), which has potent activity against the enzyme (IC50 = 2 nM) and T. brucei (EC50 = 2 nM) in culture. The compound has good oral pharmacokinetics and cures rodent models of peripheral HAT infection. This compound provides an excellent tool for validation of T. brucei NMT as a drug target for HAT as well as a valuable lead for further optimization.


Journal of Medicinal Chemistry | 2013

Drug Discovery for Neglected Diseases: Molecular Target-Based and Phenotypic Approaches

Ian H. Gilbert

Drug discovery for neglected tropical diseases is carried out using both target-based and phenotypic approaches. In this paper, target-based approaches are discussed, with a particular focus on human African trypanosomiasis. Target-based drug discovery can be successful, but careful selection of targets is required. There are still very few fully validated drug targets in neglected diseases, and there is a high attrition rate in target-based drug discovery for these diseases. Phenotypic screening is a powerful method in both neglected and non-neglected diseases and has been very successfully used. Identification of molecular targets from phenotypic approaches can be a way to identify potential new drug targets.Drug discovery for neglected tropical diseases is carried out using both target-based and phenotypic approaches. In this paper, target-based approaches are discussed, with a particular focus on human African trypanosomiasis. Target-based drug discovery can be successful, but careful selection of targets is required. There are still very few fully validated drug targets in neglected diseases, and there is a high attrition rate in target-based drug discovery for these diseases. Phenotypic screening is a powerful method in both neglected and non-neglected diseases and has been very successfully used. Identification of molecular targets from phenotypic approaches can be a way to identify potential new drug targets.


Journal of Medicinal Chemistry | 2011

Dihydroquinazolines as a Novel Class of Trypanosoma brucei Trypanothione Reductase Inhibitors: Discovery, Synthesis, and Characterization of their Binding Mode by Protein Crystallography

Stephen Patterson; Magnus S. Alphey; Deuan C. Jones; Emma Shanks; Ian P. Street; Julie A. Frearson; Paul G. Wyatt; Ian H. Gilbert; Alan H. Fairlamb

Trypanothione reductase (TryR) is a genetically validated drug target in the parasite Trypanosoma brucei, the causative agent of human African trypanosomiasis. Here we report the discovery, synthesis, and development of a novel series of TryR inhibitors based on a 3,4-dihydroquinazoline scaffold. In addition, a high resolution crystal structure of TryR, alone and in complex with substrates and inhibitors from this series, is presented. This represents the first report of a high resolution complex between a noncovalent ligand and this enzyme. Structural studies revealed that upon ligand binding the enzyme undergoes a conformational change to create a new subpocket which is occupied by an aryl group on the ligand. Therefore, the inhibitor, in effect, creates its own small binding pocket within the otherwise large, solvent exposed active site. The TryR–ligand structure was subsequently used to guide the synthesis of inhibitors, including analogues that challenged the induced subpocket. This resulted in the development of inhibitors with improved potency against both TryR and T. brucei parasites in a whole cell assay.


Drug Discovery Today | 2013

Fragment-based hit identification: thinking in 3D

Andrew D. Morley; Angelo Pugliese; Kristian Birchall; Justin Bower; Paul E. Brennan; Nathan Brown; Tim Chapman; Martin Drysdale; Ian H. Gilbert; Swen Hoelder; Allan M. Jordan; Steven V. Ley; Andy Merritt; David Miller; Martin E. Swarbrick; Paul G. Wyatt

The identification of high-quality hits during the early phases of drug discovery is essential if projects are to have a realistic chance of progressing into clinical development and delivering marketed drugs. As the pharmaceutical industry goes through unprecedented change, there are increasing opportunities to collaborate via pre-competitive networks to marshal multifunctional resources and knowledge to drive impactful, innovative science. The 3D Fragment Consortium is developing fragment-screening libraries with enhanced 3D characteristics and evaluating their effect on the quality of fragment-based hit identification (FBHI) projects.

Collaboration


Dive into the Ian H. Gilbert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reto Brun

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcel Kaiser

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar

Luis M. Ruiz-Pérez

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge