Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian Korf is active.

Publication


Featured researches published by Ian Korf.


Bioinformatics | 2007

CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes

Genís Parra; Keith Bradnam; Ian Korf

MOTIVATION The numbers of finished and ongoing genome projects are increasing at a rapid rate, and providing the catalog of genes for these new genomes is a key challenge. Obtaining a set of well-characterized genes is a basic requirement in the initial steps of any genome annotation process. An accurate set of genes is needed in order to learn about species-specific properties, to train gene-finding programs, and to validate automatic predictions. Unfortunately, many new genome projects lack comprehensive experimental data to derive a reliable initial set of genes. RESULTS In this study, we report a computational method, CEGMA (Core Eukaryotic Genes Mapping Approach), for building a highly reliable set of gene annotations in the absence of experimental data. We define a set of conserved protein families that occur in a wide range of eukaryotes, and present a mapping procedure that accurately identifies their exon-intron structures in a novel genomic sequence. CEGMA includes the use of profile-hidden Markov models to ensure the reliability of the gene structures. Our procedure allows one to build an initial set of reliable gene annotations in potentially any eukaryotic genome, even those in draft stages. AVAILABILITY Software and data sets are available online at http://korflab.ucdavis.edu/Datasets.


BMC Bioinformatics | 2004

Gene finding in novel genomes

Ian Korf

BackgroundComputational gene prediction continues to be an important problem, especially for genomes with little experimental data.ResultsI introduce the SNAP gene finder which has been designed to be easily adaptable to a variety of genomes. In novel genomes without an appropriate gene finder, I demonstrate that employing a foreign gene finder can produce highly inaccurate results, and that the most compatible parameters may not come from the nearest phylogenetic neighbor. I find that foreign gene finders are more usefully employed to bootstrap parameter estimation and that the resulting parameters can be highly accurate.ConclusionSince gene prediction is sensitive to species-specific parameters, every genome needs a dedicated gene finder.


Science | 2007

Draft Genome of the Filarial Nematode Parasite Brugia malayi

Elodie Ghedin; Shiliang Wang; David J. Spiro; Elisabet Caler; Qi Zhao; Jonathan Crabtree; Jonathan E. Allen; Arthur L. Delcher; David B. Guiliano; Diego Miranda-Saavedra; Samuel V. Angiuoli; Todd Creasy; Paolo Amedeo; Brian J. Haas; Najib M. El-Sayed; Jennifer R. Wortman; Tamara Feldblyum; Luke J. Tallon; Michael C. Schatz; Martin Shumway; Hean Koo; Seth Schobel; Mihaela Pertea; Mihai Pop; Owen White; Geoffrey J. Barton; Clotilde K. S. Carlow; Michael J. Crawford; Jennifer Daub; Matthew W. Dimmic

Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the ∼90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict ∼11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during ∼350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.


Nature Genetics | 1999

A general approach to single-nucleotide polymorphism discovery

Gabor T. Marth; Ian Korf; Mark Yandell; Raymond T. Yeh; Zhijie Gu; Hamideh Zakeri; Nathan O. Stitziel; LaDeana W. Hillier; Pui-Yan Kwok; Warren Gish

Single-nucleotide polymorphisms (SNPs) are the most abundant form of human genetic variation and a resource for mapping complex genetic traits. The large volume of data produced by high-throughput sequencing projects is a rich and largely untapped source of SNPs (refs 2, 3, 4, 5). We present here a unified approach to the discovery of variations in genetic sequence data of arbitrary DNA sources. We propose to use the rapidly emerging genomic sequence as a template on which to layer often unmapped, fragmentary sequence data and to use base quality values to discern true allelic variations from sequencing errors. By taking advantage of the genomic sequence we are able to use simpler yet more accurate methods for sequence organization: fragment clustering, paralogue identification and multiple alignment. We analyse these sequences with a novel, Bayesian inference engine, POLYBAYES, to calculate the probability that a given site is polymorphic. Rigorous treatment of base quality permits completely automated evaluation of the full length of all sequences, without limitations on alignment depth. We demonstrate this approach by accurate SNP predictions in human ESTs aligned to finished and working-draft quality genomic sequences, a data set representative of the typical challenges of sequence-based SNP discovery.


Genome Research | 2011

Assemblathon 1: A competitive assessment of de novo short read assembly methods

Dent Earl; Keith Bradnam; John St. John; Aaron E. Darling; Dawei Lin; Joseph Fass; Hung On Ken Yu; Vince Buffalo; Daniel R. Zerbino; Mark Diekhans; Ngan Nguyen; Pramila Ariyaratne; Wing-Kin Sung; Zemin Ning; Matthias Haimel; Jared T. Simpson; Nuno A. Fonseca; Inanc Birol; T. Roderick Docking; Isaac Ho; Daniel S. Rokhsar; Rayan Chikhi; Dominique Lavenier; Guillaume Chapuis; Delphine Naquin; Nicolas Maillet; Michael C. Schatz; David R. Kelley; Adam M. Phillippy; Sergey Koren

Low-cost short read sequencing technology has revolutionized genomics, though it is only just becoming practical for the high-quality de novo assembly of a novel large genome. We describe the Assemblathon 1 competition, which aimed to comprehensively assess the state of the art in de novo assembly methods when applied to current sequencing technologies. In a collaborative effort, teams were asked to assemble a simulated Illumina HiSeq data set of an unknown, simulated diploid genome. A total of 41 assemblies from 17 different groups were received. Novel haplotype aware assessments of coverage, contiguity, structure, base calling, and copy number were made. We establish that within this benchmark: (1) It is possible to assemble the genome to a high level of coverage and accuracy, and that (2) large differences exist between the assemblies, suggesting room for further improvements in current methods. The simulated benchmark, including the correct answer, the assemblies, and the code that was used to evaluate the assemblies is now public and freely available from http://www.assemblathon.org/.


GigaScience | 2013

Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species

Keith Bradnam; Joseph Fass; Anton Alexandrov; Paul Baranay; Michael Bechner; Inanc Birol; Sébastien Boisvert; Jarrod Chapman; Guillaume Chapuis; Rayan Chikhi; Hamidreza Chitsaz; Wen Chi Chou; Jacques Corbeil; Cristian Del Fabbro; Roderick R. Docking; Richard Durbin; Dent Earl; Scott J. Emrich; Pavel Fedotov; Nuno A. Fonseca; Ganeshkumar Ganapathy; Richard A. Gibbs; Sante Gnerre; Élénie Godzaridis; Steve Goldstein; Matthias Haimel; Giles Hall; David Haussler; Joseph Hiatt; Isaac Ho

BackgroundThe process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly.ResultsIn Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies.ConclusionsMany current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.


Nucleic Acids Research | 2009

Assessing the gene space in draft genomes

Genís Parra; Keith Bradnam; Zemin Ning; Thomas M. Keane; Ian Korf

Genome sequencing projects have been initiated for a wide range of eukaryotes. A few projects have reached completion, but most exist as draft assemblies. As one of the main reasons to sequence a genome is to obtain its catalog of genes, an important question is how complete or completable the catalog is in unfinished genomes. To answer this question, we have identified a set of core eukaryotic genes (CEGs), that are extremely highly conserved and which we believe are present in low copy numbers in higher eukaryotes. From an analysis of a phylogenetically diverse set of eukaryotic genome assemblies, we found that the proportion of CEGs mapped in draft genomes provides a useful metric for describing the gene space, and complements the commonly used N50 length and x-fold coverage values.


Molecular Cell | 2012

R-Loop Formation Is a Distinctive Characteristic of Unmethylated Human CpG Island Promoters

Paul A. Ginno; Paul Lott; Holly C. Christensen; Ian Korf; Frédéric Chédin

CpG islands (CGIs) function as promoters for approximately 60% of human genes. Most of these elements remain protected from CpG methylation, a prevalent epigenetic modification associated with transcriptional silencing. Here, we report that methylation-resistant CGI promoters are characterized by significant strand asymmetry in the distribution of guanines and cytosines (GC skew) immediately downstream from their transcription start sites. Using innovative genomics methodologies, we show that transcription through regions of GC skew leads to the formation of long R loop structures. Furthermore, we show that GC skew and R loop formation potential is correlated with and predictive of the unmethylated state of CGIs. Finally, we provide evidence that R loop formation protects from DNMT3B1, the primary de novo DNA methyltransferase in early development. Altogether, these results suggest that protection from DNA methylation is a built-in characteristic of the DNA sequence of CGI promoters that is revealed by the cotranscriptional formation of R loop structures.


PLOS Biology | 2005

Sorghum genome sequencing by methylation filtration.

Joseph A. Bedell; Muhammad A. Budiman; Andrew Nunberg; Robert W. Citek; Dan Robbins; Joshua Jones; Elizabeth Flick; Theresa Rohlfing; Jason Alan Fries; Kourtney Bradford; Jennifer McMenamy; Michael L. Smith; Heather Holeman; Bruce A. Roe; Graham B. Wiley; Ian Korf; Pablo D. Rabinowicz; Nathan Lakey; W. Richard McCombie; Jeffrey A. Jeddeloh; Robert A. Martienssen

Sorghum bicolor is a close relative of maize and is a staple crop in Africa and much of the developing world because of its superior tolerance of arid growth conditions. We have generated sequence from the hypomethylated portion of the sorghum genome by applying methylation filtration (MF) technology. The evidence suggests that 96% of the genes have been sequence tagged, with an average coverage of 65% across their length. Remarkably, this level of gene discovery was accomplished after generating a raw coverage of less than 300 megabases of the 735-megabase genome. MF preferentially captures exons and introns, promoters, microRNAs, and simple sequence repeats, and minimizes interspersed repeats, thus providing a robust view of the functional parts of the genome. The sorghum MF sequence set is beneficial to research on sorghum and is also a powerful resource for comparative genomics among the grasses and across the entire plant kingdom. Thousands of hypothetical gene predictions in rice and Arabidopsis are supported by the sorghum dataset, and genomic similarities highlight evolutionarily conserved regions that will lead to a better understanding of rice and Arabidopsis.


Genome Biology | 2013

Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution.

Daniël P. Melters; Keith Bradnam; Hugh A. Young; Natalie Telis; Michael R. May; J. Graham Ruby; Robert Sebra; Paul Peluso; John Eid; David Rank; José Fernando Garcia; Joseph L. DeRisi; T. P. L. Smith; Christian M. Tobias; Jeffrey Ross-Ibarra; Ian Korf; Simon W. L. Chan

BackgroundCentromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data.ResultsOur methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution.ConclusionsWhile centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.

Collaboration


Dive into the Ian Korf's collaboration.

Top Co-Authors

Avatar

Keith Bradnam

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan B. Rose

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Lott

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Porter

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge