Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian Liau is active.

Publication


Featured researches published by Ian Liau.


Analytical Chemistry | 2009

Quantitative assessment of hepatic fat of intact liver tissues with coherent anti-stokes Raman scattering microscopy.

Yao-Ming Wu; Hung-Che Chen; Wei-Tien Chang; Jhen-Wei Jhan; Hung-Lung Lin; Ian Liau

A fatty liver might progress from being a benign fatty liver, to steatohepatitis, cirrhosis, or even hepatocellular carcinoma. The great prevalence and severe outcome have warranted much investigation of the pathology and the development of effective therapies, which involve animal studies requiring critical evaluation of the hepatic fatty change. Histological examination and wet chemical analysis of liver biopsy specimens are generally employed for this purpose despite numerous procedures being involved. Using coherent anti-Stokes Raman scattering (CARS) microscopy, we have demonstrated the specific imaging of fat droplets in intact liver tissues and extracted the hepatic fat content through image analysis while eliminating laborious procedures required by traditional histopathological examination. The content of hepatic fat measured with CARS imaging was correlated strongly with that determined by biochemical analysis (R(2) = 0.89) over a pathologically significant range of the hepatic fat (from 2% to 20% of the total mass of tissue). Our work validates the quantitative assessment of fat in intact tissue through the use of CARS microscopy. When combined with the increasingly diverse animal models of diseases related to metabolic disorders of lipids, our approach is extensible to enable acquiring important insight into the genetic, environmental, and dietary factors affecting the uptake and accumulation of fat within tissues.


Analytical Chemistry | 2011

Selective and Absolute Quantification of Endogenous Hypochlorous Acid with Quantum-Dot Conjugated Microbeads

Yi-Cyun Yang; Hsueh-Han Lu; Wei-Ti Wang; Ian Liau

Endogenous hypochlorous acid (HOCl) secreted by leukocytes plays a critical role in both the immune defense of mammalians and the pathogenesis of various diseases intimately related to inflammation. We report the first selective and absolute quantification of endogenous HOCl produced by leukocytes in vitro and in vivo with a novel quantum dot-based sensor. An activated human neutrophil secreted 6.5 ± 0.9 × 10(8) HOCl molecules into its phagosome, and kinetic measurement for the secretions showed that the extracellular generation of HOCl was temporally retarded, but the quantity eventually attained a level comparable with its intraphagosomal counterpart with a delay of about 1.5 h. The quantity of HOCl secreted from the hepatic leukocytes of rats with or without stimulation of lipopolysaccharide was also determined. These results indicate a possibility to extend our approach to not only clinical settings for quantitative assessment of the bactericidal capability of isolated leukocytes of patients but also fundamental biomedical research that requires critical evaluation of the inflammatory response of animals.


Analytical Chemistry | 2013

Characterization of the Mechanodynamic Response of Cardiomyocytes with Atomic Force Microscopy

Wei-Tien Chang; David Yu; Yu-Cheng Lai; Kuen-You Lin; Ian Liau

Coordinated and synchronous contraction of cardiomyocytes ensures a normal cardiac function while deranged contraction of cardiomyocytes can lead to heart failure and circulatory dysfunction. Detailed assessment of the contractile property of cardiomyocytes not only helps elucidate the pathophysiology of heart failure but also facilitates development of novel therapies. Herein, we report application of atomic force microscopy to determine essential mechanodynamic characteristics of self-beating cardiomyocytes including the contractile amplitude, force, and frequency. The contraction was continuously measured on the same point of the cell surface; the result assessed postintervention was then compared with the baseline, and the fractional change was obtained. We employed short-time Fourier transform to analyze the time-varying contractile properties and calculate the spectrogram, based on which subtle dynamic changes in the contractile rhythmicity were delicately illustrated. To demonstrate potential applications of this approach, we examined the inotropic and chronotropic responses of cardiomyocyte contraction induced by various pharmacological interventions. The administration of epinephrine significantly increased the contractile amplitude, force, and frequency whereas esmolol markedly decreased these contractile properties. As uniquely illustrated in the spectrogram, doxorubicin not only impaired the contractility of cardiomyocytes but also drastically compromised the rhythmicity. We envision that our approach should be useful in research fields that require detailed evaluation of the mechanodynamic response of cardiomyocytes, for example, to screen drugs that possess cardiac activity or cardiotoxicity, or to assess chemicals that could direct differentiation of stem cells into functioning cardiomyocytes.


Analytical Chemistry | 2014

Molecular imaging of ischemia and reperfusion in vivo with mitochondrial autofluorescence.

Hsueh-Han Lu; Yao-Ming Wu; Wei-Tien Chang; Teng Luo; Yi-Cyun Yang; Hung-Der Cho; Ian Liau

Ischemia and reperfusion (IR) injury constitutes a pivotal mechanism of tissue damage in pathological conditions such as stroke, myocardial infarction, vascular surgery, and organ transplant. Imaging or monitoring of the change of an organ at a molecular level in real time during IR is essential to improve our understanding of the underlying pathophysiology and to guide therapeutic strategies. Herein, we report molecular imaging of a rat model of hepatic IR with the autofluorescence of mitochondrial flavins. We demonstrate a revelation of the histological characteristics of a liver in vivo with no exogenous stain and show that intravital autofluorescent images exhibited a distinctive spatiotemporal variation during IR. The autofluorescence decayed rapidly from the baseline immediately after 20-min ischemia (approximately 30% decrease in 5 min) but recovered gradually during reperfusion (to approximately 99% of the baseline 9 min after the onset of reperfusion). The autofluorescent images acquired during reperfusion correlated strongly with the reperfused blood flow. We show further that the autofluorescence was produced predominantly from mitochondria, and the distinctive autofluorescent variation during IR was mechanically linked to the altered balance between the flavins in the oxidized and reduced forms residing in the mitochondrial electron-transport chain. Our approach opens an unprecedented route to interrogate the deoxygenation and reoxygenation of mitochondria, the machinery central to the pathophysiology of IR injury, with great molecular specificity and spatiotemporal resolution and can be prospectively translated into a medical device capable of molecular imaging. We envisage that the realization thereof should shed new light on clinical diagnostics and therapeutic interventions targeting IR injuries of not only the liver but also other vital organs including the brain and heart.


Analytical Chemistry | 2014

Toward Functional Screening of Cardioactive and Cardiotoxic Drugs with Zebrafish in Vivo Using Pseudodynamic Three-Dimensional Imaging

Kuen-You Lin; Wei-Tien Chang; Yu-Cheng Lai; Ian Liau

Given the high mortality in patients with cardiovascular diseases and the life-threatening consequences of drugs with unforeseen adverse effects on hearts, a critical evaluation of the pharmacological response of cardiovascular function on model animals is important especially in the early stages of drug development. We report a proof-of-principle study to demonstrate the utility of zebrafish as an analytical platform to predict the cardiac response of new drugs or chemicals on human beings. With pseudodynamic 3D imaging, we derive individual parameters that are central to the cardiac function of zebrafish, including the ventricular stroke volume, ejection fraction, cardiac output, heart rate, diastolic filling function, and ventricular mass. We evaluate both inotropic and chronotropic responses of the heart of zebrafish treated with drugs that are commonly prescribed and possess varied known cardiac activities. We reveal deranged cardiac function of a zebrafish model of cardiomyopathy induced with a cardiotoxic drug. The cardiac function of zebrafish exhibits a pharmacological response similar to that of human beings. We compare also cardiac parameters obtained in this work with those derived with conventional 2D approximation and show that the latter tends to overestimate the cardiac parameters and produces results of greater variation. In view of the growing interest of using zebrafish in both fundamental and translational biomedical research, we envisage that our approach should benefit not only contemporary pharmaceutical development but also exploratory research such as gene, stem cell, or regenerative therapies targeting congenital or acquired heart diseases.


Journal of the American Chemical Society | 2010

Spatiotemporal Characterization of Phagocytic NADPH Oxidase and Oxidative Destruction of Intraphagosomal Organisms in Vivo Using Autofluorescence Imaging and Raman Microspectroscopy

Wei-Tien Chang; Yi-Cyun Yang; Hsueh-Han Lu; I-Lin Li; Ian Liau

The ability to generate antimicrobial reactive-oxygen species (ROS) by reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is critical for the host to defend against invading microbes. We have demonstrated the application of confocal autofluorescence microscopy and Raman microspectroscopy to characterize dynamically the phagocytic process of living macrophages in a label-free manner. In particular, we visualized the translocation of NADPH oxidases in living macrophages that are undergoing phagocytosis of invading yeasts and monitored dynamically the change at the molecular level of single intraphagosomal yeasts caused by phagocytic ROS.


Analytical Chemistry | 2014

Characterization of the pharmaceutical effect of drugs on atherosclerotic lesions in vivo using integrated fluorescence imaging and Raman spectral measurements.

Yi-Cyun Yang; Wei-Tien Chang; Shao-Kang Huang; Ian Liau

Direct assessment of the vascular lesions of model animals in vivo is important for the development of new antiatherosclerotic drugs. Nevertheless, biochemical analysis of the lipid profile in blood in vitro remains the most common way to evaluate the therapeutic effect of drugs targeting atherosclerosis because of an inherent difficulty to access the vascular wall. Using hypercholesterolemic zebrafish, we present an orchestrated application of Raman spectral measurements and confocal fluorescence imaging to interrogate the pharmacological response of atherosclerotic lesions in situ and in vivo. For demonstration, we investigated two commonly prescribed antihyperlipidemic drugs, ezetimibe and atorvastatin. The treatment of ezetimibe or atorvastatin alone decreased effectively the deposition of lipids in the vascular wall, and a combined dose showed a synergistic effect. Atorvastatin exerted a profound antioxidative effect on vascular fatty lesions. Analysis of individual lesions shows further that these lesions exhibited a heterogeneous response to the treatment of atorvastatin; a significant fraction of, but not all, the lesions became nonoxidized after the intervention. Beyond its efficacies in suppressing both the accumulation and oxidation of vascular lipids, atorvastatin expedited the clearance of vascular lipids. The possession of pleotropic (multiple) therapeutic effects on vascular fatty lesions of hypercholesterolemic zebrafish by atorvastatin is notably consistent with the known pharmaceutical effects of this drug on human beings. These results improve our understanding of the antiatherosclerotic effect of drugs. We envisage that our approach has the potential to become a platform to predict the pharmaceutical effects of new drugs aiming to cure human atherosclerotic diseases.


Biomedical Optics Express | 2014

Optical assessment of the cardiac rhythm of contracting cardiomyocytes in vitro and a pulsating heart in vivo for pharmacological screening.

Yu-Cheng Lai; Wei-Tien Chang; Kuen-You Lin; Ian Liau

Our quest in the pathogenesis and therapies targeting human heart diseases requires assessment of the contractile dynamics of cardiac models of varied complexity, such as isolated cardiomyocytes and the heart of a model animal. It is hence beneficial to have an integral means that can interrogate both cardiomyocytes in vitro and a heart in vivo. Herein we report an application of dual-beam optical reflectometry to determine noninvasively the rhythm of two representative cardiac models-chick embryonic cardiomyocytes and the heart of zebrafish. We probed self-beating cardiomyocytes and revealed the temporally varying contractile frequency with a short-time Fourier transform. Our unique dual-beam setup uniquely records the atrial and ventricular pulsations of zebrafish simultaneously. To minimize the cross talk between signals associated with atrial and ventricular chambers, we particularly modulated the two probe beams at distinct frequencies and extracted the signals specific to individual cardiac chambers with phase-sensitive detection. With this setup, we determined the atrio-ventricular interval, a parameter that is manifested by the electrical conduction from the atrium to the ventricle. To demonstrate pharmacological applications, we characterized zebrafish treated with various cardioactive and cardiotoxic drugs, and identified abnormal cardiac rhythms and atrioventricular (AV) blocks of varied degree. In light of its potential capability to assess cardiac models both in vitro and in vivo and to screen drugs with cardioactivity or toxicity, we expect this approach to have broad applications ranging from cardiopharmacology to developmental biology.


Journal of Biophotonics | 2017

Zebrafish model of photochemical thrombosis for translational research and thrombolytic screening in vivo

I-Ju Lee; Yi-Cyun Yang; Jia-Wen Hsu; Wei-Tien Chang; Yung-Jen Chuang; Ian Liau

Acute thromboembolic diseases remain the major global cause of death or disability. Although an array of thrombolytic and antithrombotic drugs has been approved to treat or prevent thromboembolic diseases, many more drugs that target specific clotting mechanisms are under development. Here a novel zebrafish model of photochemical thrombosis is reported and its prospective application for the screening and preclinical testing of thrombolytic agents in vivo is demonstrated. Through photochemical excitation, a thrombus was induced to form at a selected section of the dorsal aorta of larval zebrafish, which had been injected with photosensitizers. Such photochemical thrombosis can be consistently controlled to occlude partially or completely the targeted blood vessel. Detailed mechanistic tests indicate that the zebrafish model of photochemical thrombosis exhibits essential features of classical coagulation and a thrombolytic pathway. For demonstration, tissue plasminogen activator (tPA), a clinically feasible thrombolytic agent, was shown to effectively dissolve photochemically induced blood clots. In light of the numerous unique advantages of zebrafish as a model organism, our approach is expected to benefit not only the development of novel thrombolytic and antithrombotic strategies but also the fundamental or translational research targeting hereditary thrombotic or coagulation disorders.


Asia Communications and Photonics Conference 2016 (2016), paper AS3I.3 | 2016

Confocal Imaging Guided Photochemical Thrombosis Toward the Development of a Novel Zebrafish Model of Stroke

I-Ju Lee; Jia-Wen Hsu; Yung-Jen Chuang; Ian Liau

Confocal imaging guided photochemical thrombosis was demonstrated on living zebrafish. Occlusion at selected cerebral blood vessels caused varied mortality rate and neurological outcome. This novel zebrafish stroke model may facilitate translational research and thrombolytic screening.

Collaboration


Dive into the Ian Liau's collaboration.

Top Co-Authors

Avatar

Wei-Tien Chang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Yao-Ming Wu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Yi-Cyun Yang

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Hung-Che Chen

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

I-Ju Lee

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Jhen-Wei Jhan

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Jia-Wen Hsu

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Kuen-You Lin

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Yu-Cheng Lai

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Yung-Jen Chuang

National Tsing Hua University

View shared research outputs
Researchain Logo
Decentralizing Knowledge