Ian M. Dew
Celera Corporation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ian M. Dew.
Proceedings of the National Academy of Sciences of the United States of America | 2004
Sorin Istrail; Granger Sutton; Liliana Florea; Aaron L. Halpern; Clark M. Mobarry; Ross A. Lippert; Brian Walenz; Hagit Shatkay; Ian M. Dew; Jason R. Miller; Michael Flanigan; Nathan Edwards; Randall Bolanos; Daniel Fasulo; Bjarni V. Halldórsson; Sridhar Hannenhalli; Russell Turner; Shibu Yooseph; Fu Lu; Deborah Nusskern; Bixiong Shue; Xiangqun Holly Zheng; Fei Zhong; Arthur L. Delcher; Daniel H. Huson; Saul Kravitz; Laurent Mouchard; Knut Reinert; Karin A. Remington; Andrew G. Clark
We report a whole-genome shotgun assembly (called WGSA) of the human genome generated at Celera in 2001. The Celera-generated shotgun data set consisted of 27 million sequencing reads organized in pairs by virtue of end-sequencing 2-kbp, 10-kbp, and 50-kbp inserts from shotgun clone libraries. The quality-trimmed reads covered the genome 5.3 times, and the inserts from which pairs of reads were obtained covered the genome 39 times. With the nearly complete human DNA sequence [National Center for Biotechnology Information (NCBI) Build 34] now available, it is possible to directly assess the quality, accuracy, and completeness of WGSA and of the first reconstructions of the human genome reported in two landmark papers in February 2001 [Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., et al. (2001) Science 291, 1304–1351; International Human Genome Sequencing Consortium (2001) Nature 409, 860–921]. The analysis of WGSA shows 97% order and orientation agreement with NCBI Build 34, where most of the 3% of sequence out of order is due to scaffold placement problems as opposed to assembly errors within the scaffolds themselves. In addition, WGSA fills some of the remaining gaps in NCBI Build 34. The early genome sequences all covered about the same amount of the genome, but they did so in different ways. The Celera results provide more order and orientation, and the consortium sequence provides better coverage of exact and nearly exact repeats.
Journal of Computational Biology | 2005
Ian M. Dew; Brian Walenz; Granger Sutton
The current generation of genome assembly programs uses distance and orientation relationships of paired end reads of clones (mate pairs) to order and orient contigs. Mate pair data can also be used to evaluate and compare assemblies after the fact. Earlier work employed a simple heuristic to detect assembly problems by scanning across an assembly to locate peak concentrations of unsatisfied mate pairs. TAMPA is a novel, computational geometry-based approach to detecting assembly breakpoints by exploiting constraints that mate pairs impose on each other. The method can be used to improve assemblies and determine which of two assemblies is correct in the case of sequence disagreement. Results from several human genome assemblies are presented.
Science | 2000
Eugene W. Myers; Granger Sutton; Arthur L. Delcher; Ian M. Dew; Dan P. Fasulo; Michael Flanigan; Saul Kravitz; Clark M. Mobarry; Knut Reinert; Karin A. Remington; Eric L. Anson; Randall Bolanos; Hui Hsien Chou; Catherine Jordan; Aaron L. Halpern; Stefano Lonardi; Ellen M. Beasley; Rhonda Brandon; Lin Chen; Patrick Dunn; Zhongwu Lai; Yong Liang; Deborah Nusskern; Ming Zhan; Qing Zhang; Xiangqun Zheng; Gerald M. Rubin; Mark D. Adams; J. Craig Venter
Genome Research | 2005
Liliana Florea; Valentina Di Francesco; Jason R. Miller; Russell Turner; Alison Yao; Michael Harris; Brian Walenz; Clark M. Mobarry; Gennady V. Merkulov; Rosane Charlab; Ian M. Dew; Zuoming Deng; Sorin Istrail; Peter Li; Granger Sutton
intelligent systems in molecular biology | 2001
Daniel H. Huson; Knut Reinert; Saul Kravitz; Karin A. Remington; Arthur L. Delcher; Ian M. Dew; Michael Flanigan; Aaron L. Halpern; Zhongwu Lai; Clark M. Mobarry; Granger Sutton; Eugene W. Myers
Archive | 2000
Gene Myers; Arthur L. Delcher; Ian M. Dew; Michael Flanigan; Saul Kravitz; Clark M. Mobarry; Knut Reinert; Karin A. Remington; Granger Sutton
intelligent systems in molecular biology | 2002
Daniel Fasulo; Aaron L. Halpern; Ian M. Dew; Clark M. Mobarry