Saul Kravitz
J. Craig Venter Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Saul Kravitz.
PLOS Biology | 2007
Douglas B. Rusch; Aaron L. Halpern; Granger Sutton; Karla B. Heidelberg; Shannon J. Williamson; Shibu Yooseph; Dongying Wu; Jonathan A. Eisen; Jeff Hoffman; Karin A. Remington; Karen Beeson; Bao Duc Tran; Hamilton O. Smith; Holly Baden-Tillson; Clare Stewart; Joyce Thorpe; Jason Freeman; Cynthia Andrews-Pfannkoch; Joseph E. Venter; Kelvin Li; Saul Kravitz; John F. Heidelberg; Terry Utterback; Yu-Hui Rogers; Luisa I. Falcón; Valeria Souza; Germán Bonilla-Rosso; Luis E. Eguiarte; David M. Karl; Shubha Sathyendranath
The worlds oceans contain a complex mixture of micro-organisms that are for the most part, uncharacterized both genetically and biochemically. We report here a metagenomic study of the marine planktonic microbiota in which surface (mostly marine) water samples were analyzed as part of the Sorcerer II Global Ocean Sampling expedition. These samples, collected across a several-thousand km transect from the North Atlantic through the Panama Canal and ending in the South Pacific yielded an extensive dataset consisting of 7.7 million sequencing reads (6.3 billion bp). Though a few major microbial clades dominate the planktonic marine niche, the dataset contains great diversity with 85% of the assembled sequence and 57% of the unassembled data being unique at a 98% sequence identity cutoff. Using the metadata associated with each sample and sequencing library, we developed new comparative genomic and assembly methods. One comparative genomic method, termed “fragment recruitment,” addressed questions of genome structure, evolution, and taxonomic or phylogenetic diversity, as well as the biochemical diversity of genes and gene families. A second method, termed “extreme assembly,” made possible the assembly and reconstruction of large segments of abundant but clearly nonclonal organisms. Within all abundant populations analyzed, we found extensive intra-ribotype diversity in several forms: (1) extensive sequence variation within orthologous regions throughout a given genome; despite coverage of individual ribotypes approaching 500-fold, most individual sequencing reads are unique; (2) numerous changes in gene content some with direct adaptive implications; and (3) hypervariable genomic islands that are too variable to assemble. The intra-ribotype diversity is organized into genetically isolated populations that have overlapping but independent distributions, implying distinct environmental preference. We present novel methods for measuring the genomic similarity between metagenomic samples and show how they may be grouped into several community types. Specific functional adaptations can be identified both within individual ribotypes and across the entire community, including proteorhodopsin spectral tuning and the presence or absence of the phosphate-binding gene PstS.
PLOS Biology | 2007
Samuel Levy; Granger Sutton; Pauline C. Ng; Lars Feuk; Aaron L. Halpern; Brian Walenz; Nelson Axelrod; Jiaqi Huang; Ewen F. Kirkness; Gennady Denisov; Yuan Lin; Jeffrey R. MacDonald; Andy Wing Chun Pang; Mary Shago; Timothy B. Stockwell; Alexia Tsiamouri; Vineet Bafna; Vikas Bansal; Saul Kravitz; Dana Busam; Karen Beeson; Tina McIntosh; Karin A. Remington; Josep F. Abril; John Gill; Jon Borman; Yu-Hui Rogers; Marvin Frazier; Stephen W. Scherer; Robert L. Strausberg
Presented here is a genome sequence of an individual human. It was produced from ∼32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb) of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel) included 3,213,401 single nucleotide polymorphisms (SNPs), 53,823 block substitutions (2–206 bp), 292,102 heterozygous insertion/deletion events (indels)(1–571 bp), 559,473 homozygous indels (1–82,711 bp), 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.
Science | 2007
Vishvanath Nene; Jennifer R. Wortman; Daniel John Lawson; Brian J. Haas; Chinnappa D. Kodira; Zhijian Jake Tu; Brendan J. Loftus; Zhiyong Xi; Karyn Megy; Manfred Grabherr; Quinghu Ren; Evgeny M. Zdobnov; Neil F. Lobo; Kathryn S. Campbell; Susan E. Brown; Maria F. Bonaldo; Jingsong Zhu; Steven P. Sinkins; David G. Hogenkamp; Paolo Amedeo; Peter Arensburger; Peter W. Atkinson; Shelby Bidwell; Jim Biedler; Ewan Birney; Robert V. Bruggner; Javier Costas; Monique R. Coy; Jonathan Crabtree; Matt Crawford
We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at ∼1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of ∼4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of ∼2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.
PLOS Biology | 2007
Rekha Seshadri; Saul Kravitz; Larry Smarr; Paul Gilna; Marvin Frazier
The CAMERA (Cyberinfrastructure for Advanced Marine Microbial Ecology Research and Analysis) community database for metagenomic data deposition is an important first step in developing methods for monitoring microbial communities.
Proceedings of the National Academy of Sciences of the United States of America | 2004
Sorin Istrail; Granger Sutton; Liliana Florea; Aaron L. Halpern; Clark M. Mobarry; Ross A. Lippert; Brian Walenz; Hagit Shatkay; Ian M. Dew; Jason R. Miller; Michael Flanigan; Nathan Edwards; Randall Bolanos; Daniel Fasulo; Bjarni V. Halldórsson; Sridhar Hannenhalli; Russell Turner; Shibu Yooseph; Fu Lu; Deborah Nusskern; Bixiong Shue; Xiangqun Holly Zheng; Fei Zhong; Arthur L. Delcher; Daniel H. Huson; Saul Kravitz; Laurent Mouchard; Knut Reinert; Karin A. Remington; Andrew G. Clark
We report a whole-genome shotgun assembly (called WGSA) of the human genome generated at Celera in 2001. The Celera-generated shotgun data set consisted of 27 million sequencing reads organized in pairs by virtue of end-sequencing 2-kbp, 10-kbp, and 50-kbp inserts from shotgun clone libraries. The quality-trimmed reads covered the genome 5.3 times, and the inserts from which pairs of reads were obtained covered the genome 39 times. With the nearly complete human DNA sequence [National Center for Biotechnology Information (NCBI) Build 34] now available, it is possible to directly assess the quality, accuracy, and completeness of WGSA and of the first reconstructions of the human genome reported in two landmark papers in February 2001 [Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., et al. (2001) Science 291, 1304–1351; International Human Genome Sequencing Consortium (2001) Nature 409, 860–921]. The analysis of WGSA shows 97% order and orientation agreement with NCBI Build 34, where most of the 3% of sequence out of order is due to scaffold placement problems as opposed to assembly errors within the scaffolds themselves. In addition, WGSA fills some of the remaining gaps in NCBI Build 34. The early genome sequences all covered about the same amount of the genome, but they did so in different ways. The Celera results provide more order and orientation, and the consortium sequence provides better coverage of exact and nearly exact repeats.
Standards in Genomic Sciences | 2010
David M. Tanenbaum; Johannes Goll; Sean Murphy; Prateek Kumar; Nikhat Zafar; Mathangi Thiagarajan; Ramana Madupu; Tanja Davidsen; Leonid Kagan; Saul Kravitz; Douglas B. Rusch; Shibu Yooseph
The JCVI metagenomics analysis pipeline provides for the efficient and consistent annotation of shotgun metagenomics sequencing data for sampling communities of prokaryotic organisms. The process can be equally applied to individual sequence reads from traditional Sanger capillary electrophoresis sequences, newer technologies such as 454 pyrosequencing, or sequence assemblies derived from one or more of these data types. It includes the analysis of both coding and non-coding genes, whether full-length or, as is often the case for shotgun metagenomics, fragmentary. The system is designed to provide the best-supported conservative functional annotation based on a combination of trusted homology-based scientific evidence and computational assertions and an annotation value hierarchy established through extensive manual curation. The functional annotation attributes assigned by this system include gene name, gene symbol, GO terms [1], EC numbers [2], and JCVI functional role categories [3].
Standards in Genomic Sciences | 2011
Donato Giovannelli; Steven Ferriera; Justin Johnson; Saul Kravitz; Ileana Pérez-Rodríguez; Jessica Ricci; Charles O’Brien; James W. Voordeckers; Elisabetta Bini; Costantino Vetriani
Caminibacter mediatlanticus strain TB-2T [1], is a thermophilic, anaerobic, chemolithoautotrophic bacterium, isolated from the walls of an active deep-sea hydrothermal vent chimney on the Mid-Atlantic Ridge and the type strain of the species. C. mediatlanticus is a Gram-negative member of the Epsilonproteobacteria (order Nautiliales) that grows chemolithoautotrophically with H2 as the energy source and CO2 as the carbon source. Nitrate or sulfur is used as the terminal electron acceptor, with resulting production of ammonium and hydrogen sulfide, respectively. In view of the widespread distribution, importance and physiological characteristics of thermophilic Epsilonproteobacteria in deep-sea geothermal environments, it is likely that these organisms provide a relevant contribution to both primary productivity and the biogeochemical cycling of carbon, nitrogen and sulfur at hydrothermal vents. Here we report the main features of the genome of C. mediatlanticus strain TB-2T.
Nucleic Acids Research | 2009
Nelson Axelrod; Yuan Lin; Pauline C. Ng; Timothy B. Stockwell; Jonathan Crabtree; Jiaqi Huang; Ewen F. Kirkness; Robert L. Strausberg; Marvin Frazier; J. Craig Venter; Saul Kravitz; Samuel Levy
The HuRef Genome Browser is a web application for the navigation and analysis of the previously published genome of a human individual, termed HuRef. The browser provides a comparative view between the NCBI human reference sequence and the HuRef assembly, and it enables the navigation of the HuRef genome in the context of HuRef, NCBI and Ensembl annotations. Single nucleotide polymorphisms, indels, inversions, structural and copy-number variations are shown in the context of existing functional annotations on either genome in the comparative view. Demonstrated here are some potential uses of the browser to enable a better understanding of individual human genetic variation. The browser provides full access to the underlying reads with sequence and quality information, the genome assembly and the evidence supporting the identification of DNA polymorphisms. The HuRef Browser is a unique and versatile tool for browsing genome assemblies and studying individual human sequence variation in a diploid context. The browser is available online at http://huref.jcvi.org.
Science | 2000
Eugene W. Myers; Granger Sutton; Arthur L. Delcher; Ian M. Dew; Dan P. Fasulo; Michael Flanigan; Saul Kravitz; Clark M. Mobarry; Knut Reinert; Karin A. Remington; Eric L. Anson; Randall Bolanos; Hui Hsien Chou; Catherine Jordan; Aaron L. Halpern; Stefano Lonardi; Ellen M. Beasley; Rhonda Brandon; Lin Chen; Patrick Dunn; Zhongwu Lai; Yong Liang; Deborah Nusskern; Ming Zhan; Qing Zhang; Xiangqun Zheng; Gerald M. Rubin; Mark D. Adams; J. Craig Venter
Nature Biotechnology | 2008
Dawn Field; George M Garrity; Tanya Gray; Norman Morrison; Jeremy D. Selengut; Peter Sterk; Tatiana Tatusova; Nicholas R. Thomson; Michael J. Allen; Samuel V. Angiuoli; Michael Ashburner; Nelson Axelrod; Sandra L. Baldauf; Stuart Ballard; Jeffrey L. Boore; Guy Cochrane; James R. Cole; Peter Dawyndt; Paul De Vos; Claude W. dePamphilis; Robert Edwards; Nadeem Faruque; Robert Feldman; Jack A. Gilbert; Paul Gilna; Frank Oliver Glöckner; Philip Goldstein; Robert P. Guralnick; Daniel H. Haft; David Hancock