Ian M. O’Hara
Queensland University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ian M. O’Hara.
Bioresource Technology | 2012
Zhanying Zhang; Ian M. O’Hara; William O.S. Doherty
A biomass pretreatment process was developed using acidified ionic liquid (IL) solutions containing 10-30% water. Pretreatment of sugarcane bagasse at 130°C for 30 min by aqueous 1-butyl-3-methylimidazolium chloride (BMIMCl) solution containing 1.2% HCl resulted in a glucan digestibility of 94-100% after 72 h of enzymatic hydrolysis. HCl was found to be a more effective catalyst than H(2)SO(4) or FeCl(3). Increasing acid concentration (from 0.4% to 1.2%) and reaction temperature (from 90 to 130°C) increased glucan digestibility. The glucan digestibility of solid residue obtained with the acidified BMIMCl solution that was re-used for three times was >97%. The addition of water to ILs for pretreatment could significantly reduce IL solvent costs and allow for increased biomass loadings, making the pretreatment by ILs a more economic proposition.
Bioresource Technology | 2013
Zhanying Zhang; Heng H. Wong; Peter Albertson; William O.S. Doherty; Ian M. O’Hara
Pretreatment of sugarcane bagasse with acidified aqueous glycerol solution was evaluated at both laboratory and pilot scales. Laboratory scale pretreatment (4.00 g dry mass in 40.00 g liquid) with glycerol solutions containing ≤ 20 wt.% water and 1.2 wt.% HCl at 130°C for 60 min resulted in biomass having glucan digestibilities of ≥ 88%. Comparable glucan enzymatic digestibility of 90% was achieved with bagasse pretreated at pilot scale (10 kg dry mass in 60 kg liquid) using a glycerol solution containing 0.4 wt.% HCl and 17 wt.% water at 130°C for 15 min. We attribute more efficient pretreatment at pilot scale (despite shorter reaction time and reduced acid content) to improved mixing and heat transfer in a horizontal reactor. Pretreatment of sugarcane bagasse with acid-catalysed glycerol solutions likely produces glycerol-glycosides, which together with hydrolysed lignin are potential substrates for the production of biopolymers.
Bioresource Technology | 2013
Mark D. Harrison; Zhanying Zhang; Kylie Shand; Ian M. O’Hara; William O.S. Doherty; James L. Dale
Saccharification of sugarcane bagasse pretreated at the pilot-scale with different processes (in combination with steam-explosion) was evaluated. Maximum glucan conversion with Celluclast 1.5L (15-25FPU/g glucan) was in the following order: glycerol/HCl>HCl>H2SO4>NaOH, with the glycerol system achieving ≈ 100% conversion. Surprisingly, the NaOH substrate achieved optimum saccharification with only 8 FPU/g glucan. Glucan conversions (3.6-6%) obtained with mixtures of endo-1,4-β-glucanase (EG) and β-glucosidase (βG) for the NaOH substrate were 2-6 times that of acid substrates. However, glucan conversions (15-60%) obtained with mixtures of cellobiohydrolase (CBH I) and βG on acidified glycerol substrate were 10-30% higher than those obtained for NaOH and acid substrates. The susceptibility of the substrates to enzymatic saccharification was explained by their physical and chemical attributes. Acidified glycerol pretreatment offers the opportunity to simplify the complexity of enzyme mixtures required for saccharification of lignocellulosics.
Bioresource Technology | 2015
Zhanying Zhang; Heng H. Wong; Peter Albertson; Mark D. Harrison; William O.S. Doherty; Ian M. O’Hara
In this study, for the first time the effects of glycerol on enzymatic hydrolysis and ethanol fermentation were investigated. Enzymatic hydrolysis was inhibited slightly with 2.0 wt% glycerol, leading to reduction in glucan digestibility from 84.9% without glycerol to 82.9% (72 h). With 5.0 wt% and 10.0 wt% glycerol, glucan digestibility was reduced by 4.5% and 11.0%, respectively. However, glycerol did not irreversibly inhibit cellulase enzymes. Ethanol fermentation was not affected by glycerol up to 5.0 wt%, but was inhibited slightly at 10.0 wt% glycerol, resulting in reduction in ethanol yield from 86.0% in the absence of glycerol to 83.7% (20 h). Based on the results of laboratory and pilot-scale experiments, it was estimated that 0.142 kg ethanol can be produced from 1.0 kg dry bagasse (a glucan content of 38.0%) after pretreatment with acidified glycerol solution.
Bioresource Technology | 2015
Farah B. Ahmad; Zhanying Zhang; William O.S. Doherty; Ian M. O’Hara
Oleaginous microorganisms have potential to be used to produce oils as alternative feedstock for biodiesel production. Microalgae (Chlorella protothecoides and Chlorella zofingiensis), yeasts (Cryptococcus albidus and Rhodotorula mucilaginosa), and fungi (Aspergillus oryzae and Mucor plumbeus) were investigated for their ability to produce oil from glucose, xylose and glycerol. Multi-criteria analysis (MCA) using analytic hierarchy process (AHP) and preference ranking organization method for the enrichment of evaluations (PROMETHEE) with graphical analysis for interactive aid (GAIA), was used to rank and select the preferred microorganisms for oil production for biodiesel application. This was based on a number of criteria viz., oil concentration, content, production rate and yield, substrate consumption rate, fatty acids composition, biomass harvesting and nutrient costs. PROMETHEE selected A. oryzae, M. plumbeus and R. mucilaginosa as the most prospective species for oil production. However, further analysis by GAIA Webs identified A. oryzae and M. plumbeus as the best performing microorganisms.
Biotechnology for Biofuels | 2013
Zhanying Zhang; Darryn W. Rackemann; William O.S. Doherty; Ian M. O’Hara
BackgroundPretreatment of lignocellulosic biomass is a prerequisite for effective saccharification to produce fermentable sugars. In this study, “green” solvent systems based on acidified mixtures of glycerol carbonate (GC) and glycerol were used to treat sugarcane bagasse and the roles of each solvent in deconstructing biomass were determined.ResultsPretreatment of sugarcane bagasse at 90°C for only 30 min with acidified GC produced a solid residue having a glucan digestibility of 90% and a glucose yield of 80%, which were significantly higher than a glucan digestibility of 16% and a glucose yield of 15% obtained for bagasse pretreated with acidified ethylene carbonate (EC). Biomass compositional analyses showed that GC pretreatment removed more lignin than EC pretreatment (84% vs 54%). Scanning electron microscopy (SEM) showed that fluffy and size-reduced fibres were produced from GC pretreatment whereas EC pretreatment produced compact particles of reduced size. The maximal glucan digestibility and glucose yield of GC/glycerol systems were about 7% lower than those of EC/ethylene glycol (EG) systems. Replacing up to 50 wt% of GC with glycerol did not negatively affect glucan digestibility and glucose yield. The results from pretreatment of microcrystalline cellulose (MCC) showed that (1) pretreatment with acidified alkylene glycol (AG) alone increased enzymatic digestibility compared to pretreatments with acidified alkylene carbonate (AC) alone and acidified mixtures of AC and AG, (2) pretreatment with acidified GC alone slightly increased, but with acidified EC alone significantly decreased, enzymatic digestibility compared to untreated MCC, and (3) there was a good positive linear correlation of enzymatic digestibility of treated and untreated MCC samples with congo red (CR) adsorption capacity.ConclusionsAcidified GC alone was a more effective solvent for pretreatment of sugarcane bagasse than acidified EC alone. The higher glucose yield obtained with GC-pretreated bagasse is possibly due to the presence of one hydroxyl group in the GC molecular structure, resulting in more significant biomass delignification and defibrillation, though both solvent pretreatments reduced bagasse particles to a similar extent. The maximum glucan digestibility of GC/glycerol systems was less than that of EC/EG systems, which is likely attributed to glycerol being less effective than EG in biomass delignification and defibrillation. Acidified AC/AG solvent systems were more effective for pretreatment of lignin-containing biomass than MCC.
Enzyme and Microbial Technology | 2014
Barrie Fong Chong; Mark D. Harrison; Ian M. O’Hara
Recent developments in chemical pretreatments of lignocellulosic biomass using polyols as co-solvents (e.g., glycerol and ethylene glycol) at temperatures less than 100°C may allow the effective use of thermostable and non-thermostable cellulases in situ during the saccharification process. The potential of biomass saccharifying enzymes, endoglucanases (EG) from a thermophilic bacterium (Thermotoga maritima) and a mesophilic fungus (Trichoderma longibrachiatum), to retain their activity in aqueous buffer, acidified glycerol, and acidified ethylene glycol used as co-solvents at pretreatment temperatures at or below 100°C were examined. The results show that despite its origin, T. longibrachiatum EG (Tl-EG) retained 75% of its activity after exposure to 100°C for 5 min in aqueous buffer while T. maritima EG (Tm-EG) retained only 5% activity. However, at 90°C both enzymes retained over 87% of their activity. In acidified (0.1% (w/w) H2SO4) glycerol, Tl-EG retained similar activity (80%) to that obtained in glycerol alone, while Tm-EG retained only 35%. With acidified ethylene glycol under these conditions, both Tl-EG and Tm-EG retained 36% of their activity. The results therefore show that Tl-EG is more stable in both acidified glycerol and ethylene glycol than Tm-EG. A preliminary kinetic study showed that pure glycerol improved the thermal stability of Tl-EG but destabilized Tm-EG, relative to the buffer solution. The half-lives of both Tl-EG and Tm-EG are 4.5 min in acidified glycerol, indicating that the effectiveness of these enzymes under typical pretreatment times of greater than 15 min will be considerably diminished. Attempts have been made to explain the differences in the results obtained between the two enzymes.
Biotechnology for Biofuels | 2015
Ava A. Greenwood; Troy W. Farrell; Zhanying Zhang; Ian M. O’Hara
BackgroundAcid hydrolysis is a popular pretreatment for removing hemicellulose from lignocelluloses in order to produce a digestible substrate for enzymatic saccharification. In this work, a novel model for the dilute acid hydrolysis of hemicellulose within sugarcane bagasse is presented and calibrated against experimental oligomer profiles. The efficacy of mathematical models as hydrolysis yield predictors and as vehicles for investigating the mechanisms of acid hydrolysis is also examined.ResultsExperimental xylose, oligomer (degree of polymerisation 2 to 6) and furfural yield profiles were obtained for bagasse under dilute acid hydrolysis conditions at temperatures ranging from 110°C to 170°C. Population balance kinetics, diffusion and porosity evolution were incorporated into a mathematical model of the acid hydrolysis of sugarcane bagasse. This model was able to produce a good fit to experimental xylose yield data with only three unknown kinetic parameters ka,kb and kd. However, fitting this same model to an expanded data set of oligomeric and furfural yield profiles did not successfully reproduce the experimental results. It was found that a “hard-to-hydrolyse” parameter, α, was required in the model to ensure reproducibility of the experimental oligomer profiles at 110°C, 125°C and 140°C. The parameters obtained through the fitting exercises at lower temperatures were able to be used to predict the oligomer profiles at 155°C and 170°C with promising results.ConclusionsThe interpretation of kinetic parameters obtained by fitting a model to only a single set of data may be ambiguous. Although these parameters may correctly reproduce the data, they may not be indicative of the actual rate parameters, unless some care has been taken to ensure that the model describes the true mechanisms of acid hydrolysis. It is possible to challenge the robustness of the model by expanding the experimental data set and hence limiting the parameter space for the fitting parameters. The novel combination of “hard-to-hydrolyse” and population balance dynamics in the model presented here appears to stand up to such rigorous fitting constraints.
Industrial Crops and Products | 2013
Zhanying Zhang; Ian M. O’Hara; Geoff Kent; William O.S. Doherty
Cellulose | 2013
Zhanying Zhang; Ian M. O’Hara; William O.S. Doherty