Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William O.S. Doherty is active.

Publication


Featured researches published by William O.S. Doherty.


Green Chemistry | 2009

Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid

Suzie S. Y. Tan; Douglas R. MacFarlane; Jonathan Upfal; Leslie A. Edye; William O.S. Doherty; Antonio F. Patti; Jennifer M. Pringle; Janet L. Scott

Lignocellulosic materials are a potentially valuable source of both aromatic compoundsvia the lignin component and sugars from the cellulose and hemicellulose components. However, efficient means of separating and depolymerising the components are required. An ionic liquid mixture containing the 1-ethyl-3-methylimidazolium cation and a mixture of alkylbenzenesulfonates with xylenesulfonate as the main anion was used to extract lignin from sugarcane plant waste at atmospheric pressure and elevated temperatures (170–190 °C). The lignin was recovered from the ionic liquid by precipitation, allowing the ionic liquid to be recycled. An extraction yield exceeding 93% was attained. The lignin produced had a molecular weight of 2220 g/mol after acetylation. The regenerated ionic liquid showed good retention of structure and properties. The other product of the extraction was a cellulose pulp, which can be used in further processing.


Green Chemistry | 2016

Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification

Zhanying Zhang; Mark D. Harrison; Darryn W. Rackemann; William O.S. Doherty; Ian M. O'Hara

The combination of dwindling petroleum reserves and population growth make the development of renewable energy and chemical resources more pressing than ever before. Plant biomass is the most abundant renewable source of energy and chemicals. Enzymes can selectively convert the polysaccharides in plant biomass into simple sugars which can then be upgraded to liquid fuels and platform chemicals using biological and/or chemical processes. Pretreatment is essential for efficient enzymatic saccharification of plant biomass and this article provides an overview of how organic solvent (organosolv) pretreatments affect the structure and chemistry of plant biomass, and how these changes enhance enzymatic saccharification. A comparison between organosolv pretreatments utilizing broadly different classes of solvents (i.e., low boiling point, high boiling point, and biphasic) is presented, with a focus on solvent recovery and formation of by-products. The reaction mechanisms that give rise to these by-products are investigated and strategies to minimize by-product formation are suggested. Finally, process simulations of organosolv pretreatments are compared and contrasted, and discussed in the context of an industrial-scale plant biomass to fermentable sugar process.


Bioresource Technology | 2012

Pretreatment of sugarcane bagasse by acid-catalysed process in aqueous ionic liquid solutions

Zhanying Zhang; Ian M. O’Hara; William O.S. Doherty

A biomass pretreatment process was developed using acidified ionic liquid (IL) solutions containing 10-30% water. Pretreatment of sugarcane bagasse at 130°C for 30 min by aqueous 1-butyl-3-methylimidazolium chloride (BMIMCl) solution containing 1.2% HCl resulted in a glucan digestibility of 94-100% after 72 h of enzymatic hydrolysis. HCl was found to be a more effective catalyst than H(2)SO(4) or FeCl(3). Increasing acid concentration (from 0.4% to 1.2%) and reaction temperature (from 90 to 130°C) increased glucan digestibility. The glucan digestibility of solid residue obtained with the acidified BMIMCl solution that was re-used for three times was >97%. The addition of water to ILs for pretreatment could significantly reduce IL solvent costs and allow for increased biomass loadings, making the pretreatment by ILs a more economic proposition.


Bioresource Technology | 2013

Laboratory and pilot scale pretreatment of sugarcane bagasse by acidified aqueous glycerol solutions.

Zhanying Zhang; Heng H. Wong; Peter Albertson; William O.S. Doherty; Ian M. O’Hara

Pretreatment of sugarcane bagasse with acidified aqueous glycerol solution was evaluated at both laboratory and pilot scales. Laboratory scale pretreatment (4.00 g dry mass in 40.00 g liquid) with glycerol solutions containing ≤ 20 wt.% water and 1.2 wt.% HCl at 130°C for 60 min resulted in biomass having glucan digestibilities of ≥ 88%. Comparable glucan enzymatic digestibility of 90% was achieved with bagasse pretreated at pilot scale (10 kg dry mass in 60 kg liquid) using a glycerol solution containing 0.4 wt.% HCl and 17 wt.% water at 130°C for 15 min. We attribute more efficient pretreatment at pilot scale (despite shorter reaction time and reduced acid content) to improved mixing and heat transfer in a horizontal reactor. Pretreatment of sugarcane bagasse with acid-catalysed glycerol solutions likely produces glycerol-glycosides, which together with hydrolysed lignin are potential substrates for the production of biopolymers.


Biotechnology for Biofuels | 2012

Sugarcane bagasse pretreatment using three imidazolium-based ionic liquids; mass balances and enzyme kinetics

Sergios Kimon Karatzos; Leslie A. Edye; William O.S. Doherty

BackgroundEffective pretreatment is key to achieving high enzymatic saccharification efficiency in processing lignocellulosic biomass to fermentable sugars, biofuels and value-added products. Ionic liquids (ILs), still relatively new class of solvents, are attractive for biomass pretreatment because some demonstrate the rare ability to dissolve all components of lignocellulosic biomass including highly ordered (crystalline) cellulose. In the present study, three ILs, 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl), 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) are used to dissolve/pretreat and fractionate sugarcane bagasse. In these IL-based pretreatments the biomass is completely or partially dissolved in ILs at temperatures greater than 130°C and then precipitated by the addition of an antisolvent to the IL biomass mixture. For the first time mass balances of IL-based pretreatments are reported. Such mass balances, along with kinetics data, can be used in process modelling and design.ResultsLignin removals of 10% mass of lignin in bagasse with [C4mim]Cl, 50% mass with [C2mim]Cl and 60% mass with [C2mim]OAc, are achieved by limiting the amount of water added as antisolvent to 0.5 water:IL mass ratio thus minimising lignin precipitation. Enzyme saccharification (24 h, 15FPU) yields (% cellulose mass in starting bagasse) from the recovered solids rank as: [C2mim]OAc(83%) > >[C2mim]Cl(53%) = [C4mim]Cl(53%). Composition of [C2mim]OAc-treated solids such as low lignin, low acetyl group content and preservation of arabinosyl groups are characteristic of aqueous alkali pretreatments while those of chloride IL-treated solids resemble aqueous acid pretreatments. All ILs are fully recovered after use (100% mass as determined by ion chromatography).ConclusionsIn all three ILs regulated addition of water as an antisolvent effected a polysaccharide enriched precipitate since some of the lignin remained dissolved in the aqueous IL solution. Of the three IL studied [C2mim]OAc gave the best saccharification yield, material recovery and delignification. The effects of [C2mim]OAc pretreatment resemble those of aqueous alkali pretreatments while those of [C2mim]Cl and [C4mim]Cl resemble aqueous acid pretreatments. The use of imidazolium IL solvents with shorter alkyl chains results in accelerated dissolution, pretreatment and degradation.


Chemical Engineering Science | 2002

Mechanisms, thermodynamics and kinetics of composite fouling of calcium oxalate and amorphous silica in sugar mill evaporators—A preliminary study

Hong Yu; Roya Sheikholeslami; William O.S. Doherty

Abstract Deposition of amorphous silica (SiO 2 ) and calcium oxalate monohydrate (COM) on the calandria tubes of evaporators cause serious processing problems in many cane sugar mills. Previous studies on scale formation have concentrated on fouling of individual compounds and the development of inhibiting methods for each component. Since SiO 2 and COM co-exist in sugar mill evaporators, this paper investigates the mechanisms and behavior of composite fouling of COM and SiO 2 in binary systems. Batch tests conducted at different pH (6–8) and temperatures (60–80°C) show that the presence of SiO 2 in the supersaturated solutions of COM decreased the precipitation rate of COM and as such increased COM solubility. However, the presence of COM in the supersaturated solutions of SiO 2 accelerated SiO 2 polymerization and lowered the level of initial silica supersaturation required for polymerization. The formation of COM–SiO 2 complexes is used to propose the mechanism for the co-precipitation of SiO 2 and COM.


ieee sensors | 2012

Fiber-Optic Strain Sensor System With Temperature Compensation for Arch Bridge Condition Monitoring

M. R. Mokhtar; Kieran Owens; Jacek Kwasny; Su Taylor; P.A.M. Basheer; David Cleland; Y Bai; Mohamed Sonebi; G. Davis; A. Gupta; I. Hogg; B. Bell; William O.S. Doherty; S. McKeague; D. Moore; K. Greeves; Tong Sun; K.T.V. Grattan

This paper presents an innovative sensor system, created specifically for new civil engineering structural monitoring applications, allowing specially packaged fiber grating-based sensors to be used in harsh, in-the-field measurement conditions for accurate strain measurement with full temperature compensation. The sensor consists of two fiber Bragg gratings that are protected within a polypropylene package, with one of the fiber gratings isolated from the influence of strain and thus responding only to temperature variations, while the other is sensitive to both strain and temperature. To achieve this, the temperature-monitoring fiber grating is slightly bent and enclosed in a metal envelope to isolate it effectively from the strain. Through an appropriate calibration process, both the strain and temperature coefficients of each individual grating component when incorporated in the sensor system can be thus obtained. By using these calibrated coefficients in the operation of the sensor, both strain and temperature can be accurately determined. The specific application for which these sensors have been designed is seen when installed on an innovative small-scale flexi-arch bridge where they are used for real-time strain measurements during the critical installation stage (lifting) and loading. These sensors have demonstrated enhanced resilience when embedded in or surface-mounted on such concrete structures, providing accurate and consistent strain measurements not only during installation but subsequently during use. This offers an inexpensive and highly effective monitoring system tailored for the new, rapid method of the installation of small-scale bridges for a variety of civil engineering applications.


Bioresource Technology | 2015

Effects of glycerol on enzymatic hydrolysis and ethanol production using sugarcane bagasse pretreated by acidified glycerol solution

Zhanying Zhang; Heng H. Wong; Peter Albertson; Mark D. Harrison; William O.S. Doherty; Ian M. O’Hara

In this study, for the first time the effects of glycerol on enzymatic hydrolysis and ethanol fermentation were investigated. Enzymatic hydrolysis was inhibited slightly with 2.0 wt% glycerol, leading to reduction in glucan digestibility from 84.9% without glycerol to 82.9% (72 h). With 5.0 wt% and 10.0 wt% glycerol, glucan digestibility was reduced by 4.5% and 11.0%, respectively. However, glycerol did not irreversibly inhibit cellulase enzymes. Ethanol fermentation was not affected by glycerol up to 5.0 wt%, but was inhibited slightly at 10.0 wt% glycerol, resulting in reduction in ethanol yield from 86.0% in the absence of glycerol to 83.7% (20 h). Based on the results of laboratory and pilot-scale experiments, it was estimated that 0.142 kg ethanol can be produced from 1.0 kg dry bagasse (a glucan content of 38.0%) after pretreatment with acidified glycerol solution.


Journal of Agricultural and Food Chemistry | 2012

Insights to the clarification of sugar cane juice expressed from sugar cane stalk and trash.

Caroline C.D. Thai; Hakan Bakir; William O.S. Doherty

Processing of juice expressed from green sugar cane containing all the trash (i.e., tops and leaves, the nonstalk component) of the sugar cane plant during sugar manufacture has been reported to lead to poor clarified juice (CJ) quality. Studies of different liming techniques have been conducted to identify which liming technique gives the best clarification performance from juice expressed from green cane containing half of all trash extracted (GE). Results have shown that lime saccharate addition to juice at 76 °C either continuous or batchwise gives satisfactory settling rates of calcium phosphate flocs (50-70 cm/min) and CJ with low turbidity and minimal amounts of mineral constituents. Surprisingly, the addition of phosphoric acid (≤ 300 mg/kg as P₂O₅), prior to liming to reduce juice turbidity (≤ 80%), increased the Mg (≤ 101%) and Si (≤ 148%) contents particularly for clarified GE juices. The increase was not proportional with increasing phosphoric acid dose. The nature of the flocs formed, including the zeta potential of the particles by the different liming techniques, has been used to account for the differences in clarification performance. Differences between the qualities of the CJ obtained with GE juice and that of burnt cane juices with all trash extracted (BE) have been discussed to provide further insights into GE processing.


Bioresource Technology | 2015

A multi-criteria analysis approach for ranking and selection of microorganisms for the production of oils for biodiesel production.

Farah B. Ahmad; Zhanying Zhang; William O.S. Doherty; Ian M. O’Hara

Oleaginous microorganisms have potential to be used to produce oils as alternative feedstock for biodiesel production. Microalgae (Chlorella protothecoides and Chlorella zofingiensis), yeasts (Cryptococcus albidus and Rhodotorula mucilaginosa), and fungi (Aspergillus oryzae and Mucor plumbeus) were investigated for their ability to produce oil from glucose, xylose and glycerol. Multi-criteria analysis (MCA) using analytic hierarchy process (AHP) and preference ranking organization method for the enrichment of evaluations (PROMETHEE) with graphical analysis for interactive aid (GAIA), was used to rank and select the preferred microorganisms for oil production for biodiesel application. This was based on a number of criteria viz., oil concentration, content, production rate and yield, substrate consumption rate, fatty acids composition, biomass harvesting and nutrient costs. PROMETHEE selected A. oryzae, M. plumbeus and R. mucilaginosa as the most prospective species for oil production. However, further analysis by GAIA Webs identified A. oryzae and M. plumbeus as the best performing microorganisms.

Collaboration


Dive into the William O.S. Doherty's collaboration.

Top Co-Authors

Avatar

Zhanying Zhang

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Darryn W. Rackemann

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ian M. O'Hara

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Lalehvash Moghaddam

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Christopher P. East

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Leslie A. Edye

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

John P. Bartley

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Hong Yu

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Thomas J. Rainey

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Roya Sheikholeslami

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge