Ian M. Robertson
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ian M. Robertson.
Biochimica et Biophysica Acta | 2015
Beshay N.M. Zordoky; Ian M. Robertson; Jason R. B. Dyck
Cardiovascular disease is the leading cause of death worldwide. Despite advancements in diagnosis and treatment of cardiovascular disease, the incidence of cardiovascular disease is still rising. Therefore, new lines of medications are needed to treat the growing population of patients with cardiovascular disease. Although the majority of the existing pharmacotherapies for cardiovascular disease are synthesized molecules, natural compounds, such as resveratrol, are also being tested. Resveratrol is a non-flavonoid polyphenolic compound, which has several biological effects. Preclinical studies have provided convincing evidence that resveratrol has beneficial effects in animal models of hypertension, atherosclerosis, stroke, ischemic heart disease, arrhythmia, chemotherapy-induced cardiotoxicity, diabetic cardiomyopathy, and heart failure. Although not fully delineated, some of the beneficial cardiovascular effects of resveratrol are mediated through activation of silent information regulator 1 (SIRT1), AMP-activated protein kinase (AMPK), and endogenous anti-oxidant enzymes. In addition to these pathways, the anti-inflammatory, anti-platelet, insulin-sensitizing, and lipid-lowering properties of resveratrol contribute to its beneficial cardiovascular effects. Despite the promise of resveratrol as a treatment for numerous cardiovascular diseases, the clinical studies for resveratrol are still limited. In addition, several conflicting results from trials have been reported, which demonstrates the challenges that face the translation of the exciting preclinical findings to humans. Herein, we will review much of the preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular disease and provide information about the physiological and molecular signaling mechanisms involved. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes.
Journal of Biological Chemistry | 2006
Marcus W. Butler; Ian M. Robertson; Catherine M. Greene; Shane J. O'Neill; Clifford C. Taggart; Noel G. McElvaney
The serine anti-protease elafin is expressed by monocytes, alveolar macrophages, neutrophils, and at mucosal surfaces and possesses antimicrobial activity. It is also known to reduce lipopolysaccharide-induced neutrophil influx into murine alveoli as well as to abrogate lipopolysaccharide-induced production of matrix metalloprotease 9, macrophage inhibitory protein 2, and tumor necrosis factor-α by as-yet unidentified mechanisms. In this report we have shown that elafin inhibits the lipopolysaccharide-induced production of monocyte chemoattractant protein-1 in monocytes by inhibiting AP-1 and NF-κB activation. Elafin prevented lipopolysaccharide-induced phosphorylation of AP-1, c-Jun, and JNK but had no effect on phosphorylation of p38. The lipopolysaccharide-induced degradation of IL-1R-associated kinase 1, IκBα, and IκBβ was inhibited by elafin but phosphorylation of IκBα was unaffected. Polyubiquitinated protein including polyubiquitinated IκBα was shown to accumulate in the presence of elafin. These results suggest that inhibition by elafin of lipopolysaccharide-induced AP-1 and NF-κB activation occurs via an effect on the ubiquitin-proteasome pathway.
Journal of Biological Chemistry | 2009
Ian M. Robertson; Monica X. Li; Brian D. Sykes
Heart muscle contraction is regulated by Ca2+ binding to the thin filament protein troponin C. In cardiovascular disease, the myofilament response to Ca2+ is often altered. Compounds that rectify this perturbation are of considerable interest as therapeutics. Plant flavonoids have been found to provide protection against a variety of human illnesses such as cancer, infection, and heart disease. (−)-Epigallocatechin gallate (EGCg), the prevalent flavonoid in green tea, modulates force generation in isolated guinea pig hearts (Hotta, Y., Huang, L., Muto, T., Yajima, M., Miyazeki, K., Ishikawa, N., Fukuzawa, Y., Wakida, Y., Tushima, H., Ando, H., and Nonogaki, T. (2006) Eur. J. Pharmacol. 552, 123–130) and in skinned cardiac muscle fibers (Liou, Y. M., Kuo, S. C., and Hsieh, S. R. (2008) Pflugers Arch. 456, 787–800; and Tadano, N., Yumoto, F., Tanokura, M., Ohtsuki, I., and Morimoto, S. (2005) Biophys. J. 88, 314a). In this study we describe the solution structure of the Ca2+-saturated C-terminal domain of troponin C in complex with EGCg. Moreover, we show that EGCg forms a ternary complex with the C-terminal domain of troponin C and the anchoring region of troponin I. The structural evidence indicates that the binding site of EGCg on the C-terminal domain of troponin C is in the hydrophobic pocket in the absence of troponin I, akin to EMD 57033. Based on chemical shift mapping, the binding of EGCg to the C-terminal domain of troponin C in the presence of troponin I may be to a new site formed by the troponin C·troponin I complex. This interaction of EGCg with the C-terminal domain of troponin C·troponin I complex has not been shown with other cardiotonic molecules and illustrates the potential mechanism by which EGCg modulates heart contraction.
Biochemistry | 2008
Ian M. Robertson; Olga K. Baryshnikova; Monica X. Li; Brian D. Sykes
The interaction of Cardiac Troponin C (cTnC) and Cardiac Troponin I (cTnI) plays a critical role in transmitting the Ca2+ signal to the other myofilament proteins in the activation of cardiac muscle contraction. As such, the cTnC−cTnI interface is a logical target for cardiotonic agents such as levosimendan that can modulate the Ca2+ sensitivity of the myofilaments. Evidence indicates that drug candidates may exert their effects by targeting a site formed by binding of the switch region of cTnI to the regulatory N domain of cTnC (cNTnC). In this study, we utilized two-dimensional 1H−15N HSQC NMR spectroscopy to monitor the binding of levosimendan and its analogues, CMDP, AMDP, CI-930, imazodan, and MPDP, to cNTnC·Ca2+ in complex with two versions of the switch region of cTnI (cTnI147−163 and cTnI144−163). Levosimendan, CMDP, AMDP, and CI-930 were found to bind to both cNTnC·Ca2+·cTnI147−163 and cNTnC·Ca2+·cTnI144−163 complexes. These compounds contain a methyl group that is absent in MPDP or imazodan. Thus, the methyl group is one of the pharmacophores responsible for the action of these pyridazinone drugs on cTnC. Furthermore, the results showed that the cNTnC·Ca2+·cTnI144−163 complex presents a higher-affinity binding site for these compounds than the cNTnC·Ca2+·cTnI147−163 complex. This is consistent with our observation that the affinity of cTnI144−163 for cNTnC·Ca2+ is ∼10-fold stronger than that of cTnI147−163, likely a result of electrostatic forces between the N-terminal RRV extension in cTnI144−163 and the acidic residues in the C and D helices of cNTnC. These results will help in the delineation of the mode of action of levosimendan on the important functional unit of cardiac troponin that constitutes the regulatory domain of cTnC and the switch region of cTnI.
Biochemistry | 2008
Olga K. Baryshnikova; Ian M. Robertson; Pascal Mercier; Brian D. Sykes
NMR spectroscopy has been employed to elucidate the molecular consequences of the DCM G159D mutation on the structure and dynamics of troponin C, and its interaction with troponin I (TnI). Since the molecular effects of human mutations are often subtle, all NMR experiments were conducted as direct side-by-side comparisons of the wild-type C-domain of troponin C (cCTnC) and the mutant protein, G159D. With the mutation, the affinity toward the anchoring region of cTnI (cTnI 34-71) was reduced ( K D = 3.0 +/- 0.6 microM) compared to that of the wild type ( K D < 1 microM). Overall, the structure and dynamics of the G159D.cTnI 34-71 complex were very similar to those of the cCTnC.cTnI 34-71 complex. There were, however, significant changes in the (1)H, (13)C, and (15)N NMR chemical shifts, especially for the residues in direct contact with cTnI 34-71, and the changes in NOE connectivity patterns between the G159D.cTnI 34-71 and cCTnC.cTnI 34-71 complexes. Thus, the most parsimonious hypothesis is that the development of disease results from the poor anchoring of cTnI to cCTnC, with the resulting increase in the level of acto-myosin inhibition in agreement with physiological data. Another possibility is that long-range electrostatic interactions affect the binding of the inhibitory and switch regions of cTnI (cTnI 128-147 and cTnI 147-163) and/or the cardiac specific N-terminus of cTnI (cTnI 1-29) to the N-domain of cTnC. These important interactions are all spatially close in the X-ray structure of the cardiac TnC core.
Journal of Molecular and Cellular Cardiology | 2010
Marta Oleszczuk; Ian M. Robertson; Monica X. Li; Brian D. Sykes
The solution structure of Ca(2+)-bound regulatory domain of cardiac troponin C (cNTnC) in complex with the switch region of troponin I (cTnI(147-163)) and the calmodulin antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfinamide (W7), has been determined by NMR spectroscopy. The structure reveals that the W7 naphthalene ring interacts with the terminal methyl groups of M47, M60, and M81 as well as aliphatic and aromatic side chains of several other residues in the hydrophobic pocket of cNTnC. The H3 ring proton of W7 also contacts the methyl groups of I148 and M153 of cTnI(147-163). The N-(6-aminohexyl) tail interacts primarily with the methyl groups of V64 and M81, which are located on the C- and D-helices of cNTnC. Compared to the structure of the cNTnC*Ca(2+)*W7 complex (Hoffman, R. M. B. and Sykes, B. D. (2009) Biochemistry 48, 5541-5552), the tail of W7 reorients slightly toward the surface of cNTnC while the ring remains in the hydrophobic pocket. The positively charged -NH(3)(+) group from the tail of W7 repels the positively charged R147 of cTnI(147-163). As a result, the N-terminus of the peptide moves away from cNTnC and the helical content of cTnI(147-163) is diminished, when compared to the structure of cNTnC*Ca(2+)*cTnI(147-163) (Li, M. X., Spyracopoulos, L., and Sykes B. D. (1999) Biochemistry 38, 8289-8298). Thus the ternary structure cNTnC*Ca(2+)*W7*cTnI(147-163) reported in this study offers an explanation for the approximately 13-fold affinity reduction of cTnI(147-163) for cNTnC*Ca(2+) in the presence of W7 and provides a structural basis for the inhibitory effect of W7 in cardiac muscle contraction. This generates molecular insight into structural features that are useful for the design of cTnC-specific Ca(2+)-desensitizing drugs.
Journal of Biological Chemistry | 2012
Ian M. Robertson; Peter C. Holmes; Monica X. Li; Sandra E. Pineda-Sanabria; Olga K. Baryshnikova; Brian D. Sykes
Background: pH sensitivity differences between skeletal and cardiac muscle originate from distinct troponin I isoforms. Results: Histidine 130 in skeletal troponin I, absent in the cardiac isoform, makes an electrostatic interaction with cardiac troponin C at low pH. Conclusion: This interaction compensates for decreased calcium affinity under acidic conditions. Significance: This understanding may aid in the development of therapies that reverse the negative inotropic effects of acidosis. Myocardial ischemia is characterized by reduced blood flow to cardiomyocytes, which can lead to acidosis. Acidosis decreases the calcium sensitivity and contractile efficiency of cardiac muscle. By contrast, skeletal and neonatal muscles are much less sensitive to changes in pH. The pH sensitivity of cardiac muscle can be reduced by replacing cardiac troponin I with its skeletal or neonatal counterparts. The isoform-specific response of troponin I is dictated by a single histidine, which is replaced by an alanine in cardiac troponin I. The decreased pH sensitivity may stem from the protonation of this histidine at low pH, which would promote the formation of electrostatic interactions with negatively charged residues on troponin C. In this study, we measured acid dissociation constants of glutamate residues on troponin C and of histidine on skeletal troponin I (His-130). The results indicate that Glu-19 comes in close contact with an ionizable group that has a pKa of ∼6.7 when it is in complex with skeletal troponin I but not when it is bound to cardiac troponin I. The pKa of Glu-19 is decreased when troponin C is bound to skeletal troponin I and the pKa of His-130 is shifted upward. These results strongly suggest that these residues form an electrostatic interaction. Furthermore, we found that skeletal troponin I bound to troponin C tighter at pH 6.1 than at pH 7.5. The data presented here provide insights into the molecular mechanism for the pH sensitivity of different muscle types.
Journal of Biomolecular NMR | 2011
Ian M. Robertson; Robert F. Boyko; Brian D. Sykes
Laboratories often repeatedly determine the structure of a given protein under a variety of conditions, mutations, modifications, or in a number of states. This approach can be cumbersome and tedious. Given then a database of structures, identifiers, and corresponding 1H,15N-HSQC NMR spectra for homologous proteins, we investigated whether structural information could be ascertained for a new homolog solely from its 1H,15N-HSQC NMR spectrum. We addressed this question with two different approaches. First, we used a semi-automated approach with the program, ORBplus. ORBplus looks for patterns in the chemical shifts and correlates these commonalities to the explicit property of interest. ORBplus ranks resonances based on consistency of the magnitude and direction of the chemical shifts within the database, and the chemical shift correlation of the unknown protein with the database. ORBplus visualizes the results by a histogram and a vector diagram, and provides residue specific predictions on structural similarities with the database. The second method we used was partial least squares (PLS), which is a multivariate statistical technique used to correlate response and predictor variables. We investigated the ability of these methods to predict the tertiary structure of the contractile regulatory protein troponin C. Troponin C undergoes a closed-to-open conformational change, which is coupled to its function in muscle. We found that both ORBplus and PLS were able to identify patterns in the 1H,15N-HSQC NMR data from different states of troponin C that correlated to its conformation.
American Journal of Physiology-heart and Circulatory Physiology | 2017
Miranda M. Sung; Nikole J. Byrne; Ian M. Robertson; Ty T. Kim; Victor Samokhvalov; Jody Levasseur; Carrie-Lynn M. Soltys; David Fung; Neil Tyreman; Emmanuel Denou; Kelvin E. Jones; John M. Seubert; Jonathan D. Schertzer; Jason R. B. Dyck
We investigated whether treatment of mice with established pressure overload-induced heart failure (HF) with the naturally occurring polyphenol resveratrol could improve functional symptoms of clinical HF such as fatigue and exercise intolerance. C57Bl/6N mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Three weeks postsurgery, a cohort of mice with established HF (%ejection fraction <45) was administered resveratrol (~450 mg·kg-1·day-1) or vehicle for 2 wk. Although the percent ejection fraction was similar between both groups of HF mice, those mice treated with resveratrol had increased total physical activity levels and exercise capacity. Resveratrol treatment was associated with altered gut microbiota composition, increased skeletal muscle insulin sensitivity, a switch toward greater whole body glucose utilization, and increased basal metabolic rates. Although muscle mass and strength were not different between groups, mice with HF had significant declines in basal and ADP-stimulated O2 consumption in isolated skeletal muscle fibers compared with sham mice, which was completely normalized by resveratrol treatment. Overall, resveratrol treatment of mice with established HF enhances exercise performance, which is associated with alterations in whole body and skeletal muscle energy metabolism. Thus, our preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in HF patients.NEW & NOTEWORTHY Resveratrol treatment of mice with heart failure leads to enhanced exercise performance that is associated with altered gut microbiota composition, increased whole body glucose utilization, and enhanced skeletal muscle metabolism and function. Together, these preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in heart failure via these mechanisms.
Cardiovascular Research | 2013
Sandra E. Pineda-Sanabria; Ian M. Robertson; Monica X. Li; Brian D. Sykes
AIMS Ischaemic heart disease is the leading cause of mortality worldwide. Acidosis is the main mediator of ischaemia and shielding against it might be possible. In this study, we characterize the nature of interaction between the regulatory domain of cardiac troponin C and the A162H-substituted cardiac troponin I (cTnI) that confers protection against acidosis. METHODS AND RESULTS We used nuclear magnetic resonance spectroscopy to study the interaction of the Ca(2+)-saturated N-domain of cardiac troponin C with the switch region of cTnI containing the A162H substitution under normal and acidic conditions. Our results show that H162 increases the affinity of TnI for troponin C at pH 7 and this affinity is further enhanced at pH 6. To investigate the nature of the interactions responsible for such improvement, we determined the acid dissociation constants of the glutamate residues in troponin C. The results show that E15 and E19 exhibit deviations in their acid dissociation constant (pK(a)) profiles and reflect a common high pK(a) value of 6.8, indicating electrostatic interactions with H162. Residue H171 in wild-type cTnI does not play a similar role. CONCLUSION This work provides evidence for the mechanism by which cTnI A162H improves myocardial performance during acidosis. The electrostatic interaction between residues E15 and E19 in troponin C and H162 in TnI at low pH is responsible for stabilizing the conformation of troponin C that leads to contraction, thus partially ablating the decreased Ca(2+)-sensitivity caused by acidosis.