Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica X. Li is active.

Publication


Featured researches published by Monica X. Li.


Nature Structural & Molecular Biology | 1995

Structures of the troponin C regulatory domains in the apo and calcium-saturated states.

Stéphane M. Gagné; Sakae Tsuda; Monica X. Li; Lawrence B. Smillie; Brian D. Sykes

Regulation of contraction in skeletal muscle occurs through calcium binding to the protein troponin C. The solution structures of the regulatory domain of apo and calcium-loaded troponin C have been determined by multinuclear, multidimensional nuclear magnetic resonance techniques. The structural transition in the regulatory domain of troponin C on calcium binding involves an opening of the structure through large changes in interhelical angles. This leads to the increased exposure of an extensive hydrophobic patch, an event that triggers skeletal muscle contraction.


Journal of Biological Chemistry | 1997

Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain.

Samuel K. Sia; Monica X. Li; Leo Spyracopoulos; Stéphane M. Gagné; Wen Liu; John A. Putkey; Brian D. Sykes

The regulation of cardiac muscle contraction must differ from that of skeletal muscles to effect different physiological and contractile properties. Cardiac troponin C (TnC), the key regulator of cardiac muscle contraction, possesses different functional and Ca2+-binding properties compared with skeletal TnC and features a Ca2+-binding site I, which is naturally inactive. The structure of cardiac TnC in the Ca2+-saturated state has been determined by nuclear magnetic resonance spectroscopy. The regulatory domain exists in a “closed” conformation even in the Ca2+-bound (the “on”) state, in contrast to all predicted models and differing significantly from the calcium-induced structure observed in skeletal TnC. This structure in the Ca2+-bound state, and its subsequent interaction with troponin I (TnI), are crucial in determining the specific regulatory mechanism for cardiac muscle contraction. Further, it will allow for an understanding of the action of calcium-sensitizing drugs, which bind to cardiac TnC and are known to enhance the ability of cardiac TnC to activate cardiac muscle contraction.


Journal of Muscle Research and Cell Motility | 2004

Structural based insights into the role of troponin in cardiac muscle pathophysiology

Monica X. Li; Xu Wang; Brian D. Sykes

Abstract Troponin is a molecular switch, directly regulating the Ca2+-dependent activation of myofilament in striated muscle contraction. Cardiac troponin is subject to covalent and noncovalent modifications; phosphorylation modulates myofilament physiology, mutations are linked to familial hypertrophic cardiomyopathy, intracellular acidification causes myocardial infarction, and cardiotonic drugs modify myofilament response to Ca2+. The structure of troponin provides insights into the mechanism of this molecular switch and an understanding of the effects of protein modification under pathophysiological conditions. Although the structure of troponin C has been solved in various Ca2+-bound states for some time, structural information on troponin I and troponin T has only emerged recently. This review summarizes recent advances on the structure of complexes of troponin subunits with the aim of assessing how these proteins interact with each other to execute its role as a molecular switch and how covalent and noncovalent modifications affect the structure of troponin and the switch mechanism. We focus on pinpointing the specific amino acid residues involved in phosphorylation and mutation and the pH sensitive regions in the structure of troponin. We also present recent structural work that have identified the docking sites of several cardiotonic drugs on cardiac troponin C and discuss their relevance in the direction of troponin based drug design in the therapy of heart disease.


Journal of Biological Chemistry | 2001

Structure of the C-domain of Human Cardiac Troponin C in Complex with the Ca2+ Sensitizing Drug EMD 57033

Xu Wang; Monica X. Li; Leo Spyracopoulos; Norbert Beier; Murali Chandra; R. John Solaro; Brian D. Sykes

Ca2+ binding to cardiac troponin C (cTnC) triggers contraction in heart muscle. In heart failure, myofilaments response to Ca2+ are often altered and compounds that sensitize the myofilaments to Ca2+possess therapeutic value in this syndrome. One of the most potent and selective Ca2+ sensitizers is the thiadiazinone derivative EMD 57033, which increases myocardial contractile function bothin vivo and in vitro and interacts with cTnCin vitro. We have determined the NMR structure of the 1:1 complex between Ca2+-saturated C-domain of human cTnC (cCTnC) and EMD 57033. Favorable hydrophobic interactions between the drug and the protein position EMD 57033 in the hydrophobic cleft of the protein. The drug molecule is orientated such that the chiral group of EMD 57033 fits deep in the hydrophobic pocket and makes several key contacts with the protein. This stereospecific interaction explains why the (−)-enantiomer of EMD 57033 is inactive. Titrations of the cCTnC·EMD 57033 complex with two regions of cardiac troponin I (cTnI34–71 and cTnI128–147) reveal that the drug does not share a common binding epitope with cTnI128–147 but is completely displaced by cTnI34–71. These results have important implications for elucidating the mechanism of the Ca2+ sensitizing effect of EMD 57033 in cardiac muscle contraction.


Journal of Biological Chemistry | 2009

Solution Structure of Human Cardiac Troponin C in Complex with the Green Tea Polyphenol, (−)-Epigallocatechin 3-Gallate

Ian M. Robertson; Monica X. Li; Brian D. Sykes

Heart muscle contraction is regulated by Ca2+ binding to the thin filament protein troponin C. In cardiovascular disease, the myofilament response to Ca2+ is often altered. Compounds that rectify this perturbation are of considerable interest as therapeutics. Plant flavonoids have been found to provide protection against a variety of human illnesses such as cancer, infection, and heart disease. (−)-Epigallocatechin gallate (EGCg), the prevalent flavonoid in green tea, modulates force generation in isolated guinea pig hearts (Hotta, Y., Huang, L., Muto, T., Yajima, M., Miyazeki, K., Ishikawa, N., Fukuzawa, Y., Wakida, Y., Tushima, H., Ando, H., and Nonogaki, T. (2006) Eur. J. Pharmacol. 552, 123–130) and in skinned cardiac muscle fibers (Liou, Y. M., Kuo, S. C., and Hsieh, S. R. (2008) Pflugers Arch. 456, 787–800; and Tadano, N., Yumoto, F., Tanokura, M., Ohtsuki, I., and Morimoto, S. (2005) Biophys. J. 88, 314a). In this study we describe the solution structure of the Ca2+-saturated C-terminal domain of troponin C in complex with EGCg. Moreover, we show that EGCg forms a ternary complex with the C-terminal domain of troponin C and the anchoring region of troponin I. The structural evidence indicates that the binding site of EGCg on the C-terminal domain of troponin C is in the hydrophobic pocket in the absence of troponin I, akin to EMD 57033. Based on chemical shift mapping, the binding of EGCg to the C-terminal domain of troponin C in the presence of troponin I may be to a new site formed by the troponin C·troponin I complex. This interaction of EGCg with the C-terminal domain of troponin C·troponin I complex has not been shown with other cardiotonic molecules and illustrates the potential mechanism by which EGCg modulates heart contraction.


Gene | 2015

Structure and function of cardiac troponin C (TNNC1): Implications for heart failure, cardiomyopathies, and troponin modulating drugs.

Monica X. Li; Peter M. Hwang

In striated muscle, the protein troponin complex turns contraction on and off in a calcium-dependent manner. The calcium-sensing component of the complex is troponin C, which is expressed from the TNNC1 gene in both cardiac muscle and slow-twitch skeletal muscle (identical transcript in both tissues) and the TNNC2 gene in fast-twitch skeletal muscle. Cardiac troponin C (cTnC) is made up of two globular EF-hand domains connected by a flexible linker. The structural C-domain (cCTnC) contains two high affinity calcium-binding sites that are always occupied by Ca(2+) or Mg(2+) under physiologic conditions, stabilizing an open conformation that remains anchored to the rest of the troponin complex. In contrast, the regulatory N-domain (cNTnC) contains a single low affinity site that is largely unoccupied at resting calcium concentrations. During muscle activation, calcium binding to cNTnC favors an open conformation that binds to the switch region of troponin I, removing adjacent inhibitory regions of troponin I from actin and allowing muscle contraction to proceed. Regulation of the calcium binding affinity of cNTnC is physiologically important, because it directly impacts the calcium sensitivity of muscle contraction. Calcium sensitivity can be modified by drugs that stabilize the open form of cNTnC, post-translational modifications like phosphorylation of troponin I, or downstream thin filament protein interactions that impact the availability of the troponin I switch region. Recently, mutations in cTnC have been associated with hypertrophic or dilated cardiomyopathy. A detailed understanding of how calcium sensitivity is regulated through the troponin complex is necessary for explaining how mutations perturb its function to promote cardiomyopathy and how post-translational modifications in the thin filament affect heart function and heart failure. Troponin modulating drugs are being developed for the treatment of cardiomyopathies and heart failure.


Biochemistry and Cell Biology | 1998

The NMR angle on troponin C

Stéphane M. Gagné; Monica X. Li; Ryan T. McKay; Brian D. Sykes

The calcium-induced structural changes in the skeletal muscle regulatory protein troponin C involve a transition from a closed to an open structure with the concomitant exposure of a large hydrophobic interaction site for target proteins. NMR solution structural studies have served to define this conformational change and elucidate the mechanism of the linkage between calcium binding and the induced structural changes. These structural movements are described in terms of interhelical angles in these largely helical proteins. Oddly, the most recent structure of the cardiac system challenges the central paradigm because the calcium-bound structures are not open. The kinetics, energetics, and dynamics of these proteins have also been investigated using NMR.


Biochemistry | 2008

Defining the binding site of levosimendan and its analogues in a regulatory cardiac troponin C-troponin I complex.

Ian M. Robertson; Olga K. Baryshnikova; Monica X. Li; Brian D. Sykes

The interaction of Cardiac Troponin C (cTnC) and Cardiac Troponin I (cTnI) plays a critical role in transmitting the Ca2+ signal to the other myofilament proteins in the activation of cardiac muscle contraction. As such, the cTnC−cTnI interface is a logical target for cardiotonic agents such as levosimendan that can modulate the Ca2+ sensitivity of the myofilaments. Evidence indicates that drug candidates may exert their effects by targeting a site formed by binding of the switch region of cTnI to the regulatory N domain of cTnC (cNTnC). In this study, we utilized two-dimensional 1H−15N HSQC NMR spectroscopy to monitor the binding of levosimendan and its analogues, CMDP, AMDP, CI-930, imazodan, and MPDP, to cNTnC·Ca2+ in complex with two versions of the switch region of cTnI (cTnI147−163 and cTnI144−163). Levosimendan, CMDP, AMDP, and CI-930 were found to bind to both cNTnC·Ca2+·cTnI147−163 and cNTnC·Ca2+·cTnI144−163 complexes. These compounds contain a methyl group that is absent in MPDP or imazodan. Thus, the methyl group is one of the pharmacophores responsible for the action of these pyridazinone drugs on cTnC. Furthermore, the results showed that the cNTnC·Ca2+·cTnI144−163 complex presents a higher-affinity binding site for these compounds than the cNTnC·Ca2+·cTnI147−163 complex. This is consistent with our observation that the affinity of cTnI144−163 for cNTnC·Ca2+ is ∼10-fold stronger than that of cTnI147−163, likely a result of electrostatic forces between the N-terminal RRV extension in cTnI144−163 and the acidic residues in the C and D helices of cNTnC. These results will help in the delineation of the mode of action of levosimendan on the important functional unit of cardiac troponin that constitutes the regulatory domain of cTnC and the switch region of cTnI.


Journal of Molecular and Cellular Cardiology | 2010

Solution structure of the regulatory domain of human cardiac troponin C in complex with the switch region of cardiac troponin I and W7: the basis of W7 as an inhibitor of cardiac muscle contraction.

Marta Oleszczuk; Ian M. Robertson; Monica X. Li; Brian D. Sykes

The solution structure of Ca(2+)-bound regulatory domain of cardiac troponin C (cNTnC) in complex with the switch region of troponin I (cTnI(147-163)) and the calmodulin antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfinamide (W7), has been determined by NMR spectroscopy. The structure reveals that the W7 naphthalene ring interacts with the terminal methyl groups of M47, M60, and M81 as well as aliphatic and aromatic side chains of several other residues in the hydrophobic pocket of cNTnC. The H3 ring proton of W7 also contacts the methyl groups of I148 and M153 of cTnI(147-163). The N-(6-aminohexyl) tail interacts primarily with the methyl groups of V64 and M81, which are located on the C- and D-helices of cNTnC. Compared to the structure of the cNTnC*Ca(2+)*W7 complex (Hoffman, R. M. B. and Sykes, B. D. (2009) Biochemistry 48, 5541-5552), the tail of W7 reorients slightly toward the surface of cNTnC while the ring remains in the hydrophobic pocket. The positively charged -NH(3)(+) group from the tail of W7 repels the positively charged R147 of cTnI(147-163). As a result, the N-terminus of the peptide moves away from cNTnC and the helical content of cTnI(147-163) is diminished, when compared to the structure of cNTnC*Ca(2+)*cTnI(147-163) (Li, M. X., Spyracopoulos, L., and Sykes B. D. (1999) Biochemistry 38, 8289-8298). Thus the ternary structure cNTnC*Ca(2+)*W7*cTnI(147-163) reported in this study offers an explanation for the approximately 13-fold affinity reduction of cTnI(147-163) for cNTnC*Ca(2+) in the presence of W7 and provides a structural basis for the inhibitory effect of W7 in cardiac muscle contraction. This generates molecular insight into structural features that are useful for the design of cTnC-specific Ca(2+)-desensitizing drugs.


Journal of Biological Chemistry | 2012

Elucidation of Isoform-dependent pH Sensitivity of Troponin I by NMR Spectroscopy

Ian M. Robertson; Peter C. Holmes; Monica X. Li; Sandra E. Pineda-Sanabria; Olga K. Baryshnikova; Brian D. Sykes

Background: pH sensitivity differences between skeletal and cardiac muscle originate from distinct troponin I isoforms. Results: Histidine 130 in skeletal troponin I, absent in the cardiac isoform, makes an electrostatic interaction with cardiac troponin C at low pH. Conclusion: This interaction compensates for decreased calcium affinity under acidic conditions. Significance: This understanding may aid in the development of therapies that reverse the negative inotropic effects of acidosis. Myocardial ischemia is characterized by reduced blood flow to cardiomyocytes, which can lead to acidosis. Acidosis decreases the calcium sensitivity and contractile efficiency of cardiac muscle. By contrast, skeletal and neonatal muscles are much less sensitive to changes in pH. The pH sensitivity of cardiac muscle can be reduced by replacing cardiac troponin I with its skeletal or neonatal counterparts. The isoform-specific response of troponin I is dictated by a single histidine, which is replaced by an alanine in cardiac troponin I. The decreased pH sensitivity may stem from the protonation of this histidine at low pH, which would promote the formation of electrostatic interactions with negatively charged residues on troponin C. In this study, we measured acid dissociation constants of glutamate residues on troponin C and of histidine on skeletal troponin I (His-130). The results indicate that Glu-19 comes in close contact with an ionizable group that has a pKa of ∼6.7 when it is in complex with skeletal troponin I but not when it is bound to cardiac troponin I. The pKa of Glu-19 is decreased when troponin C is bound to skeletal troponin I and the pKa of His-130 is shifted upward. These results strongly suggest that these residues form an electrostatic interaction. Furthermore, we found that skeletal troponin I bound to troponin C tighter at pH 6.1 than at pH 7.5. The data presented here provide insights into the molecular mechanism for the pH sensitivity of different muscle types.

Collaboration


Dive into the Monica X. Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xu Wang

University of Alberta

View shared research outputs
Top Co-Authors

Avatar

Sakae Tsuda

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge