Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian N. Bratz is active.

Publication


Featured researches published by Ian N. Bratz.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome

Ian N. Bratz; Gregory M. Dick; Johnathan D. Tune; Jason M. Edwards; Zachary P. Neeb; U. Deniz Dincer; Michael Sturek

Recent studies implicate channels of the transient receptor potential vanilloid family (e.g., TRPV1) in regulating vascular tone; however, little is known about these channels in the coronary circulation. Furthermore, it is unclear whether metabolic syndrome alters the function and/or expression of TRPV1. We tested the hypothesis that TRPV1 mediates coronary vasodilation through endothelium-dependent mechanisms that are impaired by the metabolic syndrome. Studies were conducted on coronary arteries from lean and obese male Ossabaw miniature swine. In lean pigs, capsaicin, a TRPV1 agonist, relaxed arteries in a dose-dependent manner (EC50 = 116 +/- 41 nM). Capsaicin-induced relaxation was blocked by the TRPV1 antagonist capsazepine, endothelial denudation, inhibition of nitric oxide synthase, and K+ channel antagonists. Capsaicin-induced relaxation was impaired in rings from pigs with metabolic syndrome (91 +/- 4% vs. 51 +/- 10% relaxation at 100 microM). TRPV1 immunoreactivity was prominent in coronary endothelial cells. TRPV1 protein expression was decreased 40 +/- 11% in obese pigs. Capsaicin (100 microM) elicited divalent cation influx that was abolished in endothelial cells from obese pigs. These data indicate that TRPV1 channels are functionally expressed in the coronary circulation and mediate endothelium-dependent vasodilation through a mechanism involving nitric oxide and K+ channels. Impaired capsaicin-induced vasodilation in the metabolic syndrome is associated with decreased expression of TRPV1 and cation influx.


Cardiovascular Research | 2010

Exercise training decreases store-operated Ca2+entry associated with metabolic syndrome and coronary atherosclerosis

Jason M. Edwards; Zachary P. Neeb; Mouhamad Alloosh; Xin Long; Ian N. Bratz; Cassandra R. Peller; James P. Byrd; Sanjay Kumar; Alexander G. Obukhov; Michael Sturek

AIMS Stenting attenuates restenosis, but accelerated coronary artery disease (CAD) adjacent to the stent (peri-stent CAD) remains a concern in metabolic syndrome (MetS). Smooth muscle cell proliferation, a major mechanism of CAD, is mediated partly by myoplasmic Ca2+ dysregulation and store-operated Ca2+ entry (SOCE) via canonical transient receptor potential 1 (TRPC1) channels is proposed to play a key role. Exercise is known to prevent Ca2+ dysregulation in CAD. We tested the hypothesis that MetS increases SOCE and peri-stent CAD and exercise attenuates these events. METHODS AND RESULTS Groups (n = 9 pigs each) were (i) healthy lean Ossabaw swine fed standard chow, (ii) excess calorie atherogenic diet fed (MetS), and (iii) aerobically exercise trained starting after 50 weeks of development of MetS (XMetS). Bare metal stents were placed after 54 weeks on diets, and CAD and SOCE were assessed 4 weeks later. Coronary cells were dispersed proximal to the stent (peri-stent) and from non-stent segments, and fura-2 fluorescence was used to assess SOCE, which was verified by Ni2+ blockade and insensitivity to nifedipine. XMetS pigs had increased physical work capacity and decreased LDL/HDL (P < 0.05), but no attenuation of robust insulin resistance, glucose intolerance, hypertriglyceridaemia, or hypertension. CAD was greater in peri-stented vs. non-stented artery segments. MetS had the greatest CAD, SOCE, and TRPC1 and STIM1 mRNA and protein expression, which were all attenuated in XMetS. CONCLUSION This is the first report of the protective effect of exercise on native CAD, peri-stent CAD, SOCE, and molecular expression of TRPC1, STIM1, and Orai1 in MetS.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Impaired function of coronary BKCa channels in metabolic syndrome

Léna Borbouse; Gregory M. Dick; Shinichi Asano; Shawn B. Bender; U. Deniz Dincer; Gregory A. Payne; Zachary P. Neeb; Ian N. Bratz; Michael Sturek; Johnathan D. Tune

The role of large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels in regulation of coronary microvascular function is widely appreciated, but molecular and functional changes underlying the deleterious influence of metabolic syndrome (MetS) have not been determined. Male Ossabaw miniature swine consumed for 3-6 mo a normal diet (11% kcal from fat) or an excess-calorie atherogenic diet that induces MetS (45% kcal from fat, 2% cholesterol, 20% kcal from fructose). MetS significantly impaired coronary vasodilation to the BK(Ca) opener NS-1619 in vivo (30-100 microg) and reduced the contribution of these channels to adenosine-induced microvascular vasodilation in vitro (1-100 microM). MetS reduced whole cell penitrem A (1 microM)-sensitive K(+) current and NS-1619-activated (10 microM) current in isolated coronary vascular smooth muscle cells. MetS increased the concentration of free intracellular Ca(2+) and augmented coronary vasoconstriction to the L-type Ca(2+) channel agonist BAY K 8644 (10 pM-10 nM). BK(Ca) channel alpha and beta(1) protein expression was increased in coronary arteries from MetS swine. Coronary vascular dysfunction in MetS is related to impaired BK(Ca) channel function and is accompanied by significant increases in L-type Ca(2+) channel-mediated coronary vasoconstriction.


Microcirculation | 2007

Mechanisms of Coronary Dysfunction in Obesity and Insulin Resistance

Jarrod D. Knudson; U. Deniz Dincer; Ian N. Bratz; Michael Sturek; Gregory M. Dick; Johnathan D. Tune

ABSTRACT


American Journal of Physiology-heart and Circulatory Physiology | 2008

Voltage-dependent K+ channels regulate the duration of reactive hyperemia in the canine coronary circulation

Gregory M. Dick; Ian N. Bratz; Léna Borbouse; Gregory A. Payne; U. Deniz Dincer; Jarrod D. Knudson; Paul A. Rogers; Johnathan D. Tune

We previously demonstrated a role for voltage-dependent K(+) (K(V)) channels in coronary vasodilation elicited by myocardial metabolism and exogenous H(2)O(2), as responses were attenuated by the K(V) channel blocker 4-aminopyridine (4-AP). Here we tested the hypothesis that K(V) channels participate in coronary reactive hyperemia and examined the role of K(V) channels in responses to nitric oxide (NO) and adenosine, two putative mediators. Reactive hyperemia (30-s occlusion) was measured in open-chest dogs before and during 4-AP treatment [intracoronary (ic), plasma concentration 0.3 mM]. 4-AP reduced baseline flow 34 +/- 5% and inhibited hyperemic volume 32 +/- 5%. Administration of 8-phenyltheophylline (8-PT; 0.3 mM ic or 5 mg/kg iv) or N(G)-nitro-L-arginine methyl ester (L-NAME; 1 mg/min ic) inhibited early and late portions of hyperemic flow, supporting roles for adenosine and NO. 4-AP further inhibited hyperemia in the presence of 8-PT or L-NAME. Adenosine-induced blood flow responses were attenuated by 4-AP (52 +/- 6% block at 9 microg/min). Dilation of arterioles to adenosine was attenuated by 0.3 mM 4-AP and 1 microM correolide, a selective K(V)1 antagonist (76 +/- 7% and 47 +/- 2% block, respectively, at 1 microM). Dilation in response to sodium nitroprusside, an NO donor, was attenuated by 4-AP in vivo (41 +/- 6% block at 10 microg/min) and by correolide in vitro (29 +/- 4% block at 1 microM). K(V) current in smooth muscle cells was inhibited by 4-AP (IC(50) 1.1 +/- 0.1 mM) and virtually eliminated by correolide. Expression of mRNA for K(V)1 family members was detected in coronary arteries. Our data indicate that K(V) channels play an important role in regulating resting coronary blood flow, determining duration of reactive hyperemia, and mediating adenosine- and NO-induced vasodilation.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Metabolic syndrome reduces the contribution of K+ channels to ischemic coronary vasodilation

Léna Borbouse; Gregory M. Dick; Gregory A. Payne; Zachary C. Berwick; Zachary P. Neeb; Mouhamad Alloosh; Ian N. Bratz; Michael Sturek; Johnathan D. Tune

This investigation tested the hypothesis that metabolic syndrome decreases the relative contribution of specific K(+) channels to coronary reactive hyperemia. Ca(2+)-activated (BK(Ca)), voltage-activated (K(V)), and ATP-dependent (K(ATP)) K(+) channels were investigated. Studies were conducted in anesthetized miniature Ossabaw swine fed a normal maintenance diet (11% kcal from fat) or an excess calorie atherogenic diet (43% kcal from fat, 2% cholesterol, 20% kcal from fructose) for 20 wk. The latter diet induces metabolic syndrome, increasing body weight, fasting glucose, total cholesterol, and triglyceride levels. Ischemic vasodilation was determined by the coronary flow response to a 15-s occlusion before and after cumulative administration of antagonists for BK(Ca) (penitrem A; 10 microg/kg iv), K(V) (4-aminopyridine; 0.3 mg/kg iv) and K(ATP) (glibenclamide; 1 mg/kg iv) channels. Coronary reactive hyperemia was diminished by metabolic syndrome as the repayment of flow debt was reduced approximately 30% compared with lean swine. Inhibition of BK(Ca) channels had no effect on reactive hyperemia in either lean or metabolic syndrome swine. Subsequent inhibition of K(V) channels significantly reduced the repayment of flow debt ( approximately 25%) in both lean and metabolic syndrome swine. Additional blockade of K(ATP) channels further diminished ( approximately 45%) the repayment of flow debt in lean but not metabolic syndrome swine. These data indicate that the metabolic syndrome impairs coronary vasodilation in response to cardiac ischemia via reductions in the contribution of K(+) channels to reactive hyperemia.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Contribution of BKCa channels to local metabolic coronary vasodilation: effects of metabolic syndrome

Léna Borbouse; Gregory M. Dick; Gregory A. Payne; Brittany D. Payne; Mark Svendsen; Zachary P. Neeb; Mouhamad Alloosh; Ian N. Bratz; Michael Sturek; Johnathan D. Tune

This investigation was designed to examine the hypothesis that impaired function of coronary microvascular large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels in metabolic syndrome (MetS) significantly attenuates the balance between myocardial oxygen delivery and metabolism at rest and during exercise-induced increases in myocardial oxygen consumption (MVo(2)). Studies were conducted in conscious, chronically instrumented Ossabaw swine fed a normal maintenance diet (11% kcal from fat) or an excess calorie atherogenic diet (43% kcal from fat, 2% cholesterol, 20% kcal from fructose) that induces many common features of MetS. Data were collected under baseline/resting conditions and during graded treadmill exercise before and after selective blockade of BK(Ca) channels with penitrem A (10 microg/kg iv). We found that the exercise-induced increases in blood pressure were significantly elevated in MetS swine. No differences in baseline cardiac function or heart rate were noted. Induction of MetS produced a parallel downward shift in the relationship between coronary venous Po(2) and MVo(2) (P < 0.001) that was accompanied by a marked release of lactate (negative lactate uptake) as MVo(2) was increased with exercise (P < 0.005). Inhibition of BK(Ca) channels with penitrem A did not significantly affect blood pressure, heart rate, or the relationship between coronary venous Po(2) and MVo(2) in lean or MetS swine. These data indicate that BK(Ca) channels are not required for local metabolic control of coronary blood flow under physiological (lean) or pathophysiological (MetS) conditions. Therefore, diminished function of BK(Ca) channels does not contribute to the impairment of myocardial oxygen-supply demand balance in MetS.


Microcirculation | 2008

Endogenous Adipose-Derived Factors Diminish Coronary Endothelial Function via Inhibition of Nitric Oxide Synthase

Gregory A. Payne; Léna Borbouse; Ian N. Bratz; William C. Roell; H. Glenn Bohlen; Gregory M. Dick; Johnathan D. Tune

Adipocytokines may be the molecular link between obesity and vascular disease. However, the effects of these factors on coronary vascular function have not been discerned. Accordingly, the goal of this investigation was to delineate the mechanisms by which endogenous adipose‐derived factors affect coronary vascular endothelial function. Both isolated canine coronary arteries and coronary blood flow in anesthetized dogs were studied with and without exposure to adipose tissue. Infusion of adipose‐conditioned buffer directly into the coronary circulation did not change baseline hemodynamics; however, endothelial‐dependent vasodilation to bradykinin was impaired both in vitro and in vivo. Coronary vasodilation to sodium nitroprusside was unaltered by adipose tissue. Oxygen radical formation did not cause the impairment because quantified dihydroethidium staining was decreased by adipose tissue and neither a superoxide dismutase mimetic nor catalase improved endothelial function. Inhibition of nitric oxide (NO) synthase with L‐NAME diminished bradykinin‐mediated relaxations and eliminated the subsequent vascular effects of adipose tissue. In vitro measurement of NO demonstrated that adipose tissue exposure quickly lowered baseline NO and abolished bradykinin‐induced NO production. The results indicate that adipose tissue releases factor(s) that selectively impair endothelial‐dependent dilation via inhibition of NO synthase‐mediated NO production.


Microcirculation | 2006

Coronary Vasomotor Reactivity to Endothelin-1 in the Prediabetic Metabolic Syndrome

Jarrod D. Knudson; Paul A. Rogers; U. Deniz Dincer; Ian N. Bratz; Alberto G. Araiza; Gregory M. Dick; Johnathan D. Tune

Objective:The purpose of the present investigation was to test the hypothesis that coronary vasoconstrictor responses to endothelin‐1 are augmented in the prediabetic metabolic syndrome.


Journal of Pharmacology and Experimental Therapeutics | 2012

Penitrem A as a Tool for Understanding the Role of Large Conductance Ca2+/Voltage-Sensitive K+ Channels in Vascular Function

Shinichi Asano; Ian N. Bratz; Zachary C. Berwick; Ibra Fancher; Johnathan D. Tune; Gregory M. Dick

Large conductance, Ca2+/voltage-sensitive K+ channels (BK channels) are well characterized, but their physiological roles, often determined through pharmacological manipulation, are less clear. Iberiotoxin is considered the “gold standard” antagonist, but cost and membrane-impermeability limit its usefulness. Economical and membrane-permeable alternatives could facilitate the study of BK channels. Thus, we characterized the effect of penitrem A, a tremorigenic mycotoxin, on BK channels and demonstrate its utility for studying vascular function in vitro and in vivo. Whole-cell currents from human embryonic kidney 293 cells transfected with hSlo α or α + β1 were blocked >95% by penitrem A (IC50 6.4 versus 64.4 nM; p < 0.05). Furthermore, penitrem A inhibited BK channels in inside-out and cell-attached patches, whereas iberiotoxin could not. Inhibitory effects of penitrem A on whole-cell K+ currents were equivalent to iberiotoxin in canine coronary smooth muscle cells. As for specificity, penitrem A had no effect on native delayed rectifier K+ currents, cloned voltage-dependent Kv1.5 channels, or native ATP-dependent KATP current. Penitrem A enhanced the sensitivity to K+-induced contraction in canine coronary arteries by 23 ± 5% (p < 0.05) and increased the blood pressure response to phenylephrine in anesthetized mice by 36 ± 11% (p < 0.05). Our data indicate that penitrem A is a useful tool for studying the role of BK channels in vascular function and is practical for cell and tissue (in vitro) studies as well as anesthetized animal (in vivo) experiments.

Collaboration


Dive into the Ian N. Bratz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jarrod D. Knudson

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. DelloStritto

Northeast Ohio Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul A. Rogers

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge