Ian Powlesland
Defence Science and Technology Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ian Powlesland.
Applied Physics Letters | 2010
Scott D. Moss; Alex Barry; Ian Powlesland; Steve Galea; Gregory P. Carman
This paper reports on an investigation into the use of a vibro-impact approach to construct a relatively broadband kinetic energy harvester. Potentially, the vibro-impacting process may be exploited as an autotuning mechanism for energy harvesting in an environment where the source vibration spectrum varies in time, such as an aircraft in flight. The energy harvester examined in this paper is based on a vibro-impacting oscillator with double-sided, symmetrical, piezoelectric bimorph-stops. The energy harvester operates in the frequency range of 100–113 Hz and has a (non-optimized) maximum energy of 5.3 mW from an rms host vibration of 450 mG.
Smart Materials and Structures | 2011
Scott D. Moss; A Barry; Ian Powlesland; Steve Galea; Greg P. Carman
The certification of retrofitted structural health monitoring (SHM) systems for use on aircraft raises a number of challenges. One critical issue is determining the optimal means of supplying power to these systems, given that access to the existing aircraft power system is often problematic. Previously, the Australian Defence Science and Technology Organisation has shown that a structural strain-based energy harvesting approach can be used to power a device for SHM of aircraft structure. Acceleration-based power harvesting from airframes can be more demanding than a strain-based approach because the vibration spectrum of an aircraft structure can vary dynamically with flight conditions. A vibration spectrum with varying frequency may severely limit the energy harvested by a single-degree-of-freedom resonance-based device, and hence a frequency agile or (relatively) broadband device is often required to maximize the energy harvested. This paper reports on an investigation into the use of a vibro-impact approach to construct a piezoelectric-based kinetic power harvester that can operate in the approximate frequency range of 29?63?Hz.
SPIE's 8th Annual International Symposium on Smart Structures and Materials | 2001
Stephen C. Galea; Ian Powlesland; Scott D. Moss; Michael J. Konak; Stephen van der Velden; Bryan Stade; Alan Baker
The application of bonded composite patches to repair or reinforce defective metallic structures is becoming recognized as a very effective versatile repair procedure for many types of problems. Immediate applications of bonded patches are in the fields of repair of cracking, localized reinforcement after removal of corrosion damage and for reduction of fatigue strain. However, bonded repairs to critical components are generally limited due to certification concerns. For certification and management of repairs to critical structure, the Smart Patch approach may be an acceptable solution from the airworthiness prospective and be cost effective for the operator and may even allow some relaxation of the certification requirements. In the most basic form of the Smart Patch in-situ sensors can be used as the nerve system to monitor in service the structural condition (health or well-being) of the patch system and the status of the remaining damage in the parent structure. This application would also allow the operator to move away from current costly time-based maintenance procedures toward real-time health condition monitoring of the bonded repair and the repaired structure. TO this end a stand-alone data logger device, for the real-time health monitoring of bonded repaired systems, which is in close proximity to sensors on a repair is being developed. The instrumentation will measure, process and store sensor measurements during flight and then allow this data to be up-loaded, after the flight, onto a PC, via remote (wireless) data access. This paper describes two in-situ health monitoring systems which will be used on a composite bonded patch applied to an F/A-18. The two systems being developed consists of a piezoelectric (PVDF) film-based and a conventional electrical-resistance foil strain gauge-based sensing system. The latter system uses a primary cell (Lithium- based battery) as the power source, which should enable an operating life of 1-2 years. The patch health data is up- loaded by the operator using an IR link. The piezoelectric film-based sensing system is self-powered and has been designed to operate using the electrical power generated by an array of piezoelectric films, which convert structural dynamic strain to electrical energy. These transducers power the electronics which interrogate the piezoelectric film sensors, and process and store the patch health data on non-volatile memory. In this system the patch health data is up-loaded by the operator using a magnetic transreceiver. This paper describes the development and evaluation of the two systems, including issues such as system design and patch health monitoring techniques.
Proceedings of SPIE | 2010
Scott D. Moss; Jeremy Skippen; Michael J. Konak; Ian Powlesland; Steve Galea
This paper outlines the development and characterisation of a detachable acoustic electric feedthrough (DAEF) to transfer power and data across a metal (or composite) plate. The DAEF approach is being explored as a potential means of wirelessly powering in-situ structural health monitoring systems embedded within aircraft and other high value engineering assets. The DAEF technique operates via two axially aligned piezoelectric-magnet structures mounted on opposite sides of a plate. Magnetic force is used to align the two piezoelectric-magnet structures, to create an acoustic path across a plate. The piezoelectric-magnet structures consisted of Pz26 piezoelectric disk elements bonded to NdFeB magnets, with a standard ultrasonic couplant (High-Z) used between the magnet and plate to facilitate the passage of ultrasound. Measured impedance curves are matched to modeled curves using the Comsol multi-physics software coupled with a particle-swarm approach, allowing optimised Pz26 material parameters to be found (i.e. stiffness, coupling and permittivity matrices). The optimised Pz26 parameters are then used in an axi-symmetric Comsol model to make predictions about the DAEF power transfer, which is then experimentally confirmed. With an apparent input power of 1 VA and 4.2 MHz drive frequency, the measured power transfer efficiency across a 1.6 mm Al plate is ~34%. The effect of various system parameters on power transfer is explored, including bondline thickness and plate thickness. DAEF data communication is modelled using LTspice with three-port one-dimensional piezoelectric models, indicating that data rates of 115 kBit/s are feasible.
Proceedings of SPIE | 2010
Scott D. Moss; Ian Powlesland; Stephen C. Galea; Gregory P. Carman
The certification of retro-fitted structural health monitoring (SHM) systems for use on aircraft raises a number of challenges. One critical issue is determining the optimal means of supplying power to these systems, given that access to the existing aircraft power-system is often problematic. Previously, the DSTO has shown that a structural-strain based energy harvesting approach can be used to power a device for SHM of aircraft structure. Acceleration-based power harvesting from airframes can be more demanding than a strain based approach because the vibration spectrum of an aircraft structure can vary dynamically with flight conditions. A vibration spectrum with varying frequency may severely limit the power harvested by a single-degree-of-freedom resonance-based device, and hence a frequency agile or (relatively) broadband device is often required to maximize the energy harvested. This paper reports on an investigation into the use of a vibro-impact approach to construct an acceleration-based power harvester that can operate in the frequency range 29-41 Hz.
Materials Science Forum | 2010
Scott D. Moss; Ian Powlesland; Michael Konak; Alex Barry; Steve Galea; Gregory P. Carman
The certification of retro-fitted structural health monitoring (SHM) systems for use on aircraft raises a number of challenges. One critical issue is determining the optimal means of supplying power to these systems, given that access to the existing aircraft power-system is likely to be problematic. Other conventional options such as primary cells can be difficult to certify and would need periodic replacement, which in an aircraft context would pose a serious maintenance issue. Previously, the DSTO has shown that a structural-strain based energy harvesting approach can be used to power a device for SHM of aircraft structures. Acceleration-based energy harvesting from airframes is more demanding (than a strain based approach) since the vibration spectrum of an aircraft structure varies dynamically with flight conditions, and hence a frequency agile or (relatively) broad-band device is often required to maximize the energy harvested. This paper reports on the development of a prototype vibro-impacting energy harvester with a ~59 gram flying mass and two piezoelectric bimorph-stops. Over the frequency range 29-41 Hz using a continuous-sine 450 milli-g r.m.s. excitation, the harvester delivers an average of 5.1 mW. From a random band-passed 25-45 Hz excitation with r.m.s. 450 milli-g, the average harvester output is 1.7 mW.
Proceedings of SPIE | 2016
Joel Smithard; Steve Galea; Stephen van der Velden; Ian Powlesland; George Jung; Nik Rajic
Structural health monitoring (SHM) systems using structurally-integrated sensors potentially allow the ability to inspect for damage in aircraft structures on-demand and could provide a basis for the development of condition-based maintenance approaches for airframes. These systems potentially offer both substantial cost savings and performance improvements over conventional nondestructive inspection (NDI). Acousto-ultrasonics (AU), using structurallyintegrated piezoelectric transducers, offers a promising basis for broad-field damage detection in aircraft structures. For these systems to be successfully applied in the field the hardware for AU excitation and interrogation needs to be easy to use, compact, portable, light and, electrically and mechanically robust. Highly flexible and inexpensive instrumentation for basic background laboratory investigations is also required to allow researchers to tackle the numerous scientific and engineering issues associated with AU based SHM. The Australian Defence Science and Technology Group (DST Group) has developed the Acousto Ultrasonic Structural health monitoring Array Module (AUSAM+), a compact device for AU excitation and interrogation. The module, which has the footprint of a typical current generation smart phone, provides autonomous control of four send and receive piezoelectric elements, which can operate in pitch-catch or pulse-echo modes and can undertake electro-mechanical impedance measurements for transducer and structural diagnostics. Modules are designed to operate synchronously with other units, via an optical link, to accommodate larger transducer arrays. The module also caters for fibre optic sensing of acoustic waves with four intensity-based optical inputs. Temperature and electrical resistance strain gauge inputs as well as external triggering functionality are also provided. The development of a Matlab hardware object allows users to easily access the full hardware functionality of the device and provides enormous flexibility for the creation of custom interfaces. This paper discusses the impetus for the concept, and outlines key aspects of the hardware design and the module capabilities. The efficacy of the system is demonstrated through the results of first-of-class testing, as well as laboratory AU studies on a flat plate using an array of piezoelectric elements.
Proceedings of SPIE, the International Society for Optical Engineering | 2005
Stephen van der Velden; Ian Powlesland; Scott D. Moss; Paul Beckett; Jugdutt Singh
Over the last few years, piezoelectric elements have gained popularity as a convenient and relatively inexpensive interface between the electrical and mechanical domains of power harvesting and vibration damping systems. Power harvesting is commonly performed by placing a bridge rectifier across the piezoelectric element and feeding the output into a capacitor and matched load, in much the same manner as used in a standard power supply circuit. However, the overall efficiency of the electrical power harvesting system using this approach can be quite low. Therefore, there is a continued search for circuit architectures and techniques to enhance the efficiency and performance of such systems. It is shown that using piezoelectric devices for electrical power harvesting is closely related to vibration damping using the same devices. This paper proposes that focusing on the reflected mechanical power could produce more efficient systems than focusing on electrical power transfer alone. In exploring this proposition an attempt was made to identify important parameters in the design of such systems. This exploration has demonstrated the importance of maximizing the voltage across the piezoelectric element as the primary means of maximizing the reflected mechanical power. Complexity and cost are often issues when operating piezoelectric devices at high voltages, which led to the development of a relatively simple charge polarity reversal mechanism. Such a mechanism has been demonstrated to improve the efficiency of energy harvesting and/or vibration damping. Simulation of this concept shows a substantial improvement over the bridge rectifier concept. Whilst the magnitude of improvement is dependent on how high the voltage across the piezoelectric element can be raised, the scenario shown in detail gives an improvement of approximately two orders of magnitude.
AIAA 3rd "Unmanned Unlimited" Technical Conference, Workshop and Exhibit | 2004
Andrew Lucas; Ralph Rönnquist; Clint Heinze; Stephen van der Velden; Ian Powlesland; Samin Karim
UAV/UCAV technology is at a key stage of its development with the introduction of truly autonomous operations. The DARPA/Air Force/Navy J-UCAS program is a joint effort to demonstrate the technical feasibility, military utility and operational value for a networked system of high performance, weaponized unmanned air vehicles. The first demonstration of this program promises truly autonomous operations, coordinated multi-vehicle operations and dynamic tasking. The DARPA/Army UCAR program will demonstrate the enabling technologies and system capabilities required to perform the mobile strike concept of operations within the Army’s Objective Force system-ofsystems environment. Specific objectives include autonomous multi-ship cooperation and collaboration, and autonomous low-altitude flight.
Key Engineering Materials | 2013
Stephen van der Velden; Ian Powlesland; Steve Galea; Jugdutt Singh
This paper presents a dynamically reconfigurable multivariable Micro-Electro-Mechanical Systems (MEMS) sensor array, capable of reconfiguration in real time, to meet the sensing demands of unattended systems operating in highly variable environments, with an emphasis on maintaining operation of these systems in the presence of structural damage. This array is comprised of multiple instances of identical sensors which can be dynamically reconfigured to target a variety of measurands including acceleration, rotational rate, magnetic fields, temperature, air pressure and density. A simulated environment is used to illustrate how the array can be dynamically reconfigured to respond to variations in several of these parameters. Also shown are simulations that demonstrate the ability of such a sensor array to continue operation in the presence of structural damage.