Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian R. Henderson is active.

Publication


Featured researches published by Ian R. Henderson.


Nature Genetics | 2013

Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters

Kyuha Choi; Xiaohui Zhao; Krystyna A. Kelly; Oliver Venn; James D. Higgins; Nataliya E. Yelina; Thomas J. Hardcastle; Piotr A. Ziolkowski; Gregory P. Copenhaver; F. Chris H. Franklin; Gil McVean; Ian R. Henderson

PRDM9 directs human meiotic crossover hot spots to intergenic sequence motifs, whereas budding yeast hot spots overlap regions of low nucleosome density (LND) in gene promoters. To investigate hot spots in plants, which lack PRDM9, we used coalescent analysis of genetic variation in Arabidopsis thaliana. Crossovers increased toward gene promoters and terminators, and hot spots were associated with active chromatin modifications, including H2A.Z, histone H3 Lys4 trimethylation (H3K4me3), LND and low DNA methylation. Hot spot–enriched A-rich and CTT-repeat DNA motifs occurred upstream and downstream, respectively, of transcriptional start sites. Crossovers were asymmetric around promoters and were most frequent over CTT-repeat motifs and H2A.Z nucleosomes. Pollen typing, segregation and cytogenetic analysis showed decreased numbers of crossovers in the arp6 H2A.Z deposition mutant at multiple scales. During meiosis, H2A.Z forms overlapping chromosomal foci with the DMC1 and RAD51 recombinases. As arp6 reduced the number of DMC1 or RAD51 foci, H2A.Z may promote the formation or processing of meiotic DNA double-strand breaks. We propose that gene chromatin ancestrally designates hot spots within eukaryotes and PRDM9 is a derived state within vertebrates.


PLOS Genetics | 2012

Epigenetic Remodeling of Meiotic Crossover Frequency in Arabidopsis thaliana DNA Methyltransferase Mutants

Nataliya E. Yelina; Kyuha Choi; Liudmila Chelysheva; Malcolm Macaulay; Bastiaan de Snoo; Erik Wijnker; Nigel Miller; Jan Drouaud; Mathilde Grelon; Gregory P. Copenhaver; Christine Mézard; Krystyna A. Kelly; Ian R. Henderson

Meiosis is a specialized eukaryotic cell division that generates haploid gametes required for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover (CO). Meiotic CO frequency varies along the physical length of chromosomes and is determined by hierarchical mechanisms, including epigenetic organization, for example methylation of the DNA and histones. Here we investigate the role of DNA methylation in determining patterns of CO frequency along Arabidopsis thaliana chromosomes. In A. thaliana the pericentromeric regions are repetitive, densely DNA methylated, and suppressed for both RNA polymerase-II transcription and CO frequency. DNA hypomethylated methyltransferase1 (met1) mutants show transcriptional reactivation of repetitive sequences in the pericentromeres, which we demonstrate is coupled to extensive remodeling of CO frequency. We observe elevated centromere-proximal COs in met1, coincident with pericentromeric decreases and distal increases. Importantly, total numbers of CO events are similar between wild type and met1, suggesting a role for interference and homeostasis in CO remodeling. To understand recombination distributions at a finer scale we generated CO frequency maps close to the telomere of chromosome 3 in wild type and demonstrate an elevated recombination topology in met1. Using a pollen-typing strategy we have identified an intergenic nucleosome-free CO hotspot 3a, and we demonstrate that it undergoes increased recombination activity in met1. We hypothesize that modulation of 3a activity is caused by CO remodeling driven by elevated centromeric COs. These data demonstrate how regional epigenetic organization can pattern recombination frequency along eukaryotic chromosomes.


Plant Journal | 2015

Meiotic recombination hotspots - a comparative view.

Kyuha Choi; Ian R. Henderson

During meiosis homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover. Meiotic recombination has a profound effect on patterns of genetic variation and is an important tool during crop breeding. Crossovers initiate from programmed DNA double-stranded breaks that are processed to form single-stranded DNA, which can invade a homologous chromosome. Strand invasion events mature into double Holliday junctions that can be resolved as crossovers. Extensive variation in the frequency of meiotic recombination occurs along chromosomes and is typically focused in narrow hotspots, observed both at the level of DNA breaks and final crossovers. We review methodologies to profile hotspots at different steps of the meiotic recombination pathway that have been used in different eukaryote species. We then discuss what these studies have revealed concerning specification of hotspot locations and activity and the contributions of both genetic and epigenetic factors. Understanding hotspots is important for interpreting patterns of genetic variation in populations and how eukaryotic genomes evolve. In addition, manipulation of hotspots will allow us to accelerate crop breeding, where meiotic recombination distributions can be limiting.


PLOS Genetics | 2013

Contrasted Patterns of Crossover and Non-crossover at Arabidopsis thaliana Meiotic Recombination Hotspots

Jan Drouaud; Hossein Khademian; Laurène Giraut; Vanessa Zanni; Sarah Bellalou; Ian R. Henderson; Matthieu Falque; Christine Mézard

The vast majority of meiotic recombination events (crossovers (COs) and non-crossovers (NCOs)) cluster in narrow hotspots surrounded by large regions devoid of recombinational activity. Here, using a new molecular approach in plants, called “pollen-typing”, we detected and characterized hundreds of CO and NCO molecules in two different hotspot regions in Arabidopsis thaliana. This analysis revealed that COs are concentrated in regions of a few kilobases where their rates reach up to 50 times the genome average. The hotspots themselves tend to cluster in regions less than 8 kilobases in size with overlapping CO distribution. Non-crossover (NCO) events also occurred in the two hotspots but at very different levels (local CO/NCO ratios of 1/1 and 30/1) and their track lengths were quite small (a few hundred base pairs). We also showed that the ZMM protein MSH4 plays a role in CO formation and somewhat unexpectedly we also found that it is involved in the generation of NCOs but with a different level of effect. Finally, factors acting in cis and in trans appear to shape the rate and distribution of COs at meiotic recombination hotspots.


Genes & Development | 2015

DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis.

Nataliya E. Yelina; Christophe Lambing; Thomas J. Hardcastle; Xiaohui Zhao; Bruno Santos; Ian R. Henderson

During meiosis, homologous chromosomes undergo crossover recombination, which is typically concentrated in narrow hot spots that are controlled by genetic and epigenetic information. Arabidopsis chromosomes are highly DNA methylated in the repetitive centromeres, which are also crossover-suppressed. Here we demonstrate that RNA-directed DNA methylation is sufficient to locally silence Arabidopsis euchromatic crossover hot spots and is associated with increased nucleosome density and H3K9me2. However, loss of CG DNA methylation maintenance in met1 triggers epigenetic crossover remodeling at the chromosome scale, with pericentromeric decreases and euchromatic increases in recombination. We used recombination mutants that alter interfering and noninterfering crossover repair pathways (fancm and zip4) to demonstrate that remodeling primarily involves redistribution of interfering crossovers. Using whole-genome bisulfite sequencing, we show that crossover remodeling is driven by loss of CG methylation within the centromeric regions. Using cytogenetics, we profiled meiotic DNA double-strand break (DSB) foci in met1 and found them unchanged relative to wild type. We propose that met1 chromosome structure is altered, causing centromere-proximal DSBs to be inhibited from maturation into interfering crossovers. These data demonstrate that DNA methylation is sufficient to silence crossover hot spots and plays a key role in establishing domains of meiotic recombination along chromosomes.


Current Opinion in Plant Biology | 2012

Control of meiotic recombination frequency in plant genomes

Ian R. Henderson

Sexual eukaryotes reproduce via the meiotic cell division, where ploidy is halved and homologous chromosomes undergo reciprocal genetic exchange, termed crossover (CO). CO frequency has a profound effect on patterns of genetic variation and species evolution. Relative CO rates vary extensively both within and between plant genomes. Plant genome size varies by over 1000-fold, largely due to differential expansion of repetitive sequences, and increased genome size is associated with reduced CO frequency. Gene versus repeat sequences associate with distinct chromatin modifications, and evidence from plant genomes indicates that this epigenetic information influences CO patterns. This is consistent with data from diverse eukaryotes that demonstrate the importance of chromatin structure for control of meiotic recombination. In this review I will discuss CO frequency patterns in plant genomes and recent advances in understanding recombination distributions.


Journal of Experimental Botany | 2010

Meiosis in flowering plants and other green organisms

C. Jill Harrison; Elizabeth Alvey; Ian R. Henderson

Sexual eukaryotes generate gametes using a specialized cell division called meiosis that serves both to halve the number of chromosomes and to reshuffle genetic variation present in the parent. The nature and mechanism of the meiotic cell division in plants and its effect on genetic variation are reviewed here. As flowers are the site of meiosis and fertilization in angiosperms, meiotic control will be considered within this developmental context. Finally, we review what is known about the control of meiosis in green algae and non-flowering land plants and discuss evolutionary transitions relating to meiosis that have occurred in the lineages giving rise to the angiosperms.


eLife | 2015

Juxtaposition of heterozygous and homozygous regions causes reciprocal crossover remodelling via interference during Arabidopsis meiosis

Piotr A. Ziolkowski; Luke E. Berchowitz; Christophe Lambing; Nataliya E. Yelina; Xiaohui Zhao; Krystyna A. Kelly; Kyuha Choi; Liliana Ziolkowska; Viviana June; Eugenio Sanchez-Moran; Chris Franklin; Gregory P. Copenhaver; Ian R. Henderson

During meiosis homologous chromosomes undergo crossover recombination. Sequence differences between homologs can locally inhibit crossovers. Despite this, nucleotide diversity and population-scaled recombination are positively correlated in eukaryote genomes. To investigate interactions between heterozygosity and recombination we crossed Arabidopsis lines carrying fluorescent crossover reporters to 32 diverse accessions and observed hybrids with significantly higher and lower crossovers than homozygotes. Using recombinant populations derived from these crosses we observed that heterozygous regions increase crossovers when juxtaposed with homozygous regions, which reciprocally decrease. Total crossovers measured by chiasmata were unchanged when heterozygosity was varied, consistent with homeostatic control. We tested the effects of heterozygosity in mutants where the balance of interfering and non-interfering crossover repair is altered. Crossover remodeling at homozygosity-heterozygosity junctions requires interference, and non-interfering repair is inefficient in heterozygous regions. As a consequence, heterozygous regions show stronger crossover interference. Our findings reveal how varying homolog polymorphism patterns can shape meiotic recombination. DOI: http://dx.doi.org/10.7554/eLife.03708.001


Genes & Development | 2017

Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination

Piotr A. Ziolkowski; Charles J. Underwood; Christophe Lambing; Marina Martinez-Garcia; Emma J. Lawrence; Liliana Ziolkowska; Catherine Griffin; Kyuha Choi; F. Chris H. Franklin; Robert A. Martienssen; Ian R. Henderson

During meiosis, homologous chromosomes undergo crossover recombination, which creates genetic diversity and balances homolog segregation. Despite these critical functions, crossover frequency varies extensively within and between species. Although natural crossover recombination modifier loci have been detected in plants, causal genes have remained elusive. Using natural Arabidopsis thaliana accessions, we identified two major recombination quantitative trait loci (rQTLs) that explain 56.9% of crossover variation in Col×Ler F2 populations. We mapped rQTL1 to semidominant polymorphisms in HEI10, which encodes a conserved ubiquitin E3 ligase that regulates crossovers. Null hei10 mutants are haploinsufficient, and, using genome-wide mapping and immunocytology, we show that transformation of additional HEI10 copies is sufficient to more than double euchromatic crossovers. However, heterochromatic centromeres remained recombination-suppressed. The strongest HEI10-mediated crossover increases occur in subtelomeric euchromatin, which is reminiscent of sex differences in Arabidopsis recombination. Our work reveals that HEI10 naturally limits Arabidopsis crossovers and has the potential to influence the response to selection.


Nature Protocols | 2013

High-throughput analysis of meiotic crossover frequency and interference via flow cytometry of fluorescent pollen in Arabidopsis thaliana

Nataliya E. Yelina; Piotr A. Ziolkowski; Nigel Miller; Xiaohui Zhao; Krystyna A. Kelly; Daniela F. Muñoz; David J. Mann; Gregory P. Copenhaver; Ian R. Henderson

During meiosis, reciprocal exchange between homologous chromosomes occurs as a result of crossovers (COs). CO frequency varies within genomes and is subject to genetic, epigenetic and environmental control. As robust measurement of COs is limited by their low numbers, typically 1–2 per chromosome, we adapted flow cytometry for use with Arabidopsis transgenic fluorescent protein–tagged lines (FTLs) that express eCFP, dsRed or eYFP fluorescent proteins in pollen. Segregation of genetically linked transgenes encoding fluorescent proteins of distinct colors can be used to detect COs. The fluorescence of up to 80,000 pollen grains per individual plant can be measured in 10–15 min using this protocol. A key element of CO control is interference, which inhibits closely spaced COs. We describe a three-color assay for the measurement of CO frequency in adjacent intervals and calculation of CO interference. We show that this protocol can be used to detect changes in CO frequency and interference in the fancm zip4 double mutant. By enabling high-throughput measurement of CO frequency and interference, these methods will facilitate genetic dissection of meiotic recombination control.

Collaboration


Dive into the Ian R. Henderson's collaboration.

Top Co-Authors

Avatar

Kyuha Choi

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piotr A. Ziolkowski

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaohui Zhao

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heïdi Serra

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Robert A. Martienssen

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gregory P. Copenhaver

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge