Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian R. Waite is active.

Publication


Featured researches published by Ian R. Waite.


Ecological Applications | 2009

Responses of benthic macroinvertebrates to environmental changes associated with urbanization in nine metropolitan areas

Thomas F. Cuffney; Robin A. Brightbill; Jason T. May; Ian R. Waite

Responses of benthic macroinvertebrates along gradients of urban intensity were investigated in nine metropolitan areas across the United States. Invertebrate assemblages in metropolitan areas where forests or shrublands were being converted to urban land were strongly related to urban intensity. In metropolitan areas where agriculture and grazing lands were being converted to urban land, invertebrate assemblages showed much weaker or nonsignificant relations with urban intensity because sites with low urban intensity were already degraded by agriculture. Ordination scores, the number of EPT taxa, and the mean pollution-tolerance value of organisms at a site were the best indicators of changes in assemblage condition. Diversity indices, functional groups, behavior, and dominance metrics were not good indicators of urbanization. Richness metrics were better indicators of urban effects than were abundance metrics, and qualitative samples collected from multiple habitats gave similar results to those of single habitat quantitative samples (riffles or woody snags) in all metropolitan areas. Changes in urban intensity were strongly correlated with a set of landscape variables that was consistent across all metropolitan areas. In contrast, the instream environmental variables that were strongly correlated with urbanization and invertebrate responses varied among metropolitan areas. The natural environmental setting determined the biological, chemical, and physical instream conditions upon which urbanization acts and dictated the differences in responses to urbanization among metropolitan areas. Threshold analysis showed little evidence for an initial period of resistance to urbanization. Instead, assemblages were degraded at very low levels of urbanization, and response rates were either similar across the gradient or higher at low levels of urbanization. Levels of impervious cover that have been suggested as protective of streams (5-10%) were associated with significant assemblage degradation and were not protective.


Journal of The North American Benthological Society | 2000

Comparing strengths of geographic and nongeographic classifications of stream benthic macroinvertebrates in the Mid-Atlantic Highlands, USA

Ian R. Waite; Alan T. Herlihy; David P. Larsen; Donald J. Klemm

The US Environmental Protection Agency’s (USEPA) Environmental Monitoring and Assessment Program (EMAP) sampled ∼500 wadeable streams in the Mid-Atlantic Highlands region of the US during the late spring of 1993 to 1995 for a variety of physical, chemical, and biological indicators of environmental condition. Eighty-eight sites that were minimally affected by human activities were chosen to determine the extent to which geographic and stream-based classifications accounted for variation in the composition of riffle macroinvertebrate assemblages. Bray–Curtis similarities among sites were calculated from the relative abundance of macroinvertebrates to assess the strength of classifications based on geography (ecoregions and catchments), habitat (slope and stream order), and water chemistry (conductivity). For comparison, a taxonomic classification (two-way indicator species analysis, TWINSPAN) and a gradient analysis (correspondence analysis, CA) were performed on the macroinvertebrate data. To assess the effect of taxonomic resolution, all analyses were completed at the family level and to lowest practical taxon. The large overall variation within and among ecoregions resulted in a low average classification strength (CS) of ecoregions, although some ecoregions had high CS. Stream order had the highest CS of the habitat and water chemistry classifications. Ecoregion CS increased, however, when stream sites were 1st stratified by stream order (ecoregions nested within stream order). Nested ecoregion CS did not increase within 1st-order streams, yet increased within 2nd- and 3rd-order streams. CA ordinations and TWINSPAN classification showed a clear gradient of streams along stream size (order), with a clear separation of 1st- and 3rd-order streams based on macroinvertebrate composition. The ordinations did not, however, show a distinct clustering of sites on the basis of ecoregions. Overall, the lowest practical taxon level of identification resulted in a clearer pattern of sites in ordination space than did family-level identification, yet only a slight improvement in the different classifications (geographic, habitat, and water chemistry) based on average similarity.


Transactions of The American Fisheries Society | 2000

Associations among fish assemblage structure and environmental variables in Willamette Basin streams, Oregon

Ian R. Waite; Kurt D. Carpenter

Abstract As part of the U.S. Geological Surveys National Water-Quality Assessment Program, fish were collected from 24 selected stream sites in the Willamette Basin during 1993–1995 to determine the composition of the fish assemblages and their relation to the chemical and physical environment. Variance in fish relative abundance was greater among all sites than among spatially distinct reaches within a site (spatial variation) or among multiple sampled years at a site (temporal variation). Therefore, data from a single reach in an individual year was considered to be a reliable estimator of the fish assemblage structure at a site when the data were normalized by percent relative abundance. Multivariate classification and ordination were used to examine patterns in environmental variables and fish relative abundance over differing spatial scales (among versus within ecoregions). Across all ecoregions (all sites), fish assemblages were primarily structured along environmental gradients of water temperatur...


Environmental Monitoring and Assessment | 2000

Relations of Habitat-Specific Algal Assemblages to Land Use and Water Chemistry in the Willamette Basin, Oregon

Kurt D. Carpenter; Ian R. Waite

Benthic algal assemblages, water chemistry, and habitat were characterized at 25 stream sites in the Willamette Basin, Oregon, during low flow in 1994. Seventy-three algal samples yielded 420 taxa — mostly diatoms, blue-green algae, and green algae. Algal assemblages from depositional samples were strongly dominated by diatoms (76% mean relative abundance), whereas erosional samples were dominated by blue-green algae (68% mean relative abundance).Canonical correspondence analysis (CCA) of semiquantitative and qualitative (presence/absence) data sets identified four environmental variables (maximum specific conductance, % open canopy, pH, and drainage area) that were significant in describing patterns of algal taxa among sites. Based on CCA, four groups of sites were identified: streams in forested basins that supported oligotrophic taxa, such as Diatoma mesodon;small streams in agricultural and urban basins that contained a variety of eutrophic and nitrogen-heterotrophic algal taxa; larger rivers draining areas of mixed land use that supported planktonic, eutrophic, and nitrogen-heterotrophic algal taxa; and streams with severely degraded or absent riparian vegetation (> 75% open canopy) that were dominated by other planktonic, eutrophic, and nitrogen-heterotrophic algal taxa. Patterns in water chemistry were consistent with the algal autecological interpretations and clearly demonstrated relationships between land use, water quality, and algal distribution patterns.


Science of The Total Environment | 2014

Contaminants of legacy and emerging concern in largescale suckers (Catostomus macrocheilus) and the foodweb in the lower Columbia River, Oregon and Washington, USA

Elena B. Nilsen; Steven D. Zaugg; David A. Alvarez; Ian R. Waite; Timothy D. Counihan; Jill M. Hardiman; Leticia Torres; Reynaldo Patiño; Matthew G. Mesa; Robert A. Grove

We investigated occurrence, transport pathways, and effects of polybrominated diphenyl ether (PBDE) flame retardants and other endocrine disrupting chemicals (EDCs) in aquatic media and the foodweb in the lower Columbia River. In 2009 and 2010, foodweb sampling at three sites along a gradient of contaminant exposure near Skamania (Washington), Columbia City (Oregon) and Longview (Washington) included water (via passive samplers), bed sediment, invertebrate biomass residing in sediment, a resident fish species (largescale suckers [Catostomus macrocheilus]), and eggs from osprey (Pandion haliaetus). This paper primarily reports fish tissue concentrations. In 2009, composites of fish brain, fillet, liver, stomach, and gonad tissues revealed that overall contaminant concentrations were highest in livers, followed by brain, stomach, gonad, and fillet. Concentrations of halogenated compounds in tissue samples from all three sites ranged from <1 to 400nanograms per gram of wet tissue. Several chemical classes, including PBDEs, organochlorine pesticides, and polychlorinated biphenyls (PCBs), were detected at all sites and in nearly all fish tissues sampled. In 2010, only fish livers were sampled and inter-site concentration differences were not as pronounced as in 2009. Chemical concentrations in sediments, fish tissues, and osprey eggs increased moving downstream from Skamania to the urbanized sites near Columbia City and Longview. Numerous organochlorine (OC) pesticides, both banned and currently used, and PBDEs, were present at each site in multiple media and concentrations exceeded environmental quality benchmarks in some cases. Frequently detected OC compounds included hexachlorobenzene, pentachloroanisole, dichlorodiphenyltrichloroethane (DDT) and its degradates, chlorpyrifos, and oxyfluorofen. Biomagnification of BDE47, 100, 153, and 154 occurred in largescale suckers and osprey eggs. Results support the hypothesis that contaminants in the environment lead to bioaccumulation and potential negative effects in multiple levels of the foodweb.


Environmental Monitoring and Assessment | 2009

The relative influence of geographic location and reach-scale habitat on benthic invertebrate assemblages in six ecoregions

Mark D. Munn; Ian R. Waite; David P. Larsen; Alan T. Herlihy

The objective of this study was to determine the relative influence of reach-specific habitat variables and geographic location on benthic invertebrate assemblages within six ecoregions across the Western USA. This study included 417 sites from six ecoregions. A total of 301 taxa were collected with the highest richness associated with ecoregions dominated by streams with coarse substrate (19–29 taxa per site). Lowest richness (seven to eight taxa per site) was associated with ecoregions dominated by fine-grain substrate. Principle component analysis (PCA) on reach-scale habitat separated the six ecoregions into those in high-gradient mountainous areas (Coast Range, Cascades, and Southern Rockies) and those in lower-gradient ecoregions (Central Great Plains and Central California Valley). Nonmetric multidimensional scaling (NMS) models performed best in ecoregions dominated by coarse-grain substrate and high taxa richness, along with coarse-grain substrates sites combined from multiple ecoregions regardless of location. In contrast, ecoregions or site combinations dominated by fine-grain substrate had poor model performance (high stress). Four NMS models showed that geographic location (i.e. latitude and longitude) was important for: (1) all ecoregions combined, (2) all sites dominated by coarse-grain sub strate combined, (3) Cascades Ecoregion, and (4) Columbia Ecoregion. Local factors (i.e. substrate or water temperature) seem to be overriding factors controlling invertebrate composition across the West, regardless of geographic location.


PLOS ONE | 2014

Stream macroinvertebrate response models for bioassessment metrics: addressing the issue of spatial scale

Ian R. Waite; Jonathan G. Kennen; Jason T. May; Larry R. Brown; Thomas F. Cuffney; Kimberly A. Jones; James L. Orlando

We developed independent predictive disturbance models for a full regional data set and four individual ecoregions (Full Region vs. Individual Ecoregion models) to evaluate effects of spatial scale on the assessment of human landscape modification, on predicted response of stream biota, and the effect of other possible confounding factors, such as watershed size and elevation, on model performance. We selected macroinvertebrate sampling sites for model development (n = 591) and validation (n = 467) that met strict screening criteria from four proximal ecoregions in the northeastern U.S.: North Central Appalachians, Ridge and Valley, Northeastern Highlands, and Northern Piedmont. Models were developed using boosted regression tree (BRT) techniques for four macroinvertebrate metrics; results were compared among ecoregions and metrics. Comparing within a region but across the four macroinvertebrate metrics, the average richness of tolerant taxa (RichTOL) had the highest R2 for BRT models. Across the four metrics, final BRT models had between four and seven explanatory variables and always included a variable related to urbanization (e.g., population density, percent urban, or percent manmade channels), and either a measure of hydrologic runoff (e.g., minimum April, average December, or maximum monthly runoff) and(or) a natural landscape factor (e.g., riparian slope, precipitation, and elevation), or a measure of riparian disturbance. Contrary to our expectations, Full Region models explained nearly as much variance in the macroinvertebrate data as Individual Ecoregion models, and taking into account watershed size or elevation did not appear to improve model performance. As a result, it may be advantageous for bioassessment programs to develop large regional models as a preliminary assessment of overall disturbance conditions as long as the range in natural landscape variability is not excessive.


Science of The Total Environment | 2014

A survey of benthic sediment contaminants in reaches of the Columbia River Estuary based on channel sedimentation characteristics

Timothy D. Counihan; Ian R. Waite; Elena B. Nilsen; Jill M. Hardiman; E. P. L. Elias; Guy Gelfenbaum; Steven D. Zaugg

While previous studies have documented contaminants in fish, sediments, water, and wildlife, few specifics are known about the spatial distribution of contaminants in the Columbia River Estuary (CRE). Our study goal was to characterize sediment contaminant detections and concentrations in reaches of the CRE that were concurrently being sampled to assess contaminants in water, invertebrates, fish, and osprey (Pandion haliaetus) eggs. Our objectives were to develop a survey design based on sedimentation characteristics and then assess whether sediment grain size, total organic carbon (TOC), and contaminant concentrations and detections varied between areas with different sedimentation characteristics. We used a sediment transport model to predict sedimentation characteristics of three 16km river reaches in the CRE. We then compartmentalized the modeled change in bed mass after a two week simulation to define sampling strata with depositional, stable, or erosional conditions. We collected and analyzed bottom sediments to assess whether substrate composition, organic matter composition, and contaminant concentrations and detections varied among strata within and between the reaches. We observed differences in grain size fractions between strata within and between reaches. We found that the fine sediment fraction was positively correlated with TOC. Contaminant concentrations were statistically different between depositional vs. erosional strata for the industrial compounds, personal care products and polycyclic aromatic hydrocarbons class (Indus-PCP-PAH). We also observed significant differences between strata in the number of detections of Indus-PCP-PAH (depositional vs. erosional; stable vs. erosional) and for the flame retardants, polychlorinated biphenyls, and pesticides class (depositional vs. erosional, depositional vs. stable). When we estimated mean contaminant concentrations by reach, we observed higher contaminant concentrations in the furthest downstream reach with a decreasing trend in the two upstream reaches. Contaminant survey designs that account for sedimentation characteristics could increase the probability that sampling is allocated to areas likely to be contaminated.


Hydrobiologia | 2014

Agricultural disturbance response models for invertebrate and algal metrics from streams at two spatial scales within the U.S.

Ian R. Waite

As part of the USGS study of nutrient enrichment of streams in agricultural regions throughout the United States, about 30 sites within each of eight study areas were selected to capture a gradient of nutrient conditions. The objective was to develop watershed disturbance predictive models for macroinvertebrate and algal metrics at national and three regional landscape scales to obtain a better understanding of important explanatory variables. Explanatory variables in models were generated from landscape data, habitat, and chemistry. Instream nutrient concentration and variables assessing the amount of disturbance to the riparian zone (e.g., percent row crops or percent agriculture) were selected as most important explanatory variable in almost all boosted regression tree models regardless of landscape scale or assemblage. Frequently, TN and TP concentration and riparian agricultural land use variables showed a threshold type response at relatively low values to biotic metrics modeled. Some measure of habitat condition was also commonly selected in the final invertebrate models, though the variable(s) varied across regions. Results suggest national models tended to account for more general landscape/climate differences, while regional models incorporated both broad landscape scale and more specific local-scale variables.


Environmental Monitoring and Assessment | 1998

Comparison of streambed sediment and aquatic biota as media for characterizing trace elements and organochlorine compounds in the Willamette Basin, Oregon

Dennis A. Wentz; Ian R. Waite; Frank A. Rinella

During 1992–93, 27 organochlorine compounds (pesticides plus total PCB) and 17 trace elements were analyzed in bed sediment and aquatic biota from 20 stream sites in the Willamette Basin as part of the U.S. Geological Surveys National Water-Quality Assessment Program. Data from each medium were compared to evaluate their relative effectiveness for assessing occurrence (broadly defined as documentation of important concentrations) of these constituents. Except for Cd, Hg, Se, and Ag, trace element concentrations generally were higher in bed sediment than in biota. Conversely, although frequencies of detection for organochlorine compounds in biota were only slightly greater than in bed sediment, actual concentrations in biota (normalized to lipid) were as much as 19 times those in sediment (normalized to organic carbon). Sculpin (Cottus spp.) and Asiatic clams (Corbicula fluminea), found at 14 and 7 sites, respectively, were the most widespread taxa collected during the study. Concentrations of trace elements, particularly As and Cu, were typically greater in Asiatic clams than in sculpin. In contrast, almost half of the organochlorine compounds analyzed were found in sculpin, but only DDT and its degradation products were detected in Asiatic clams; this may be related to the lipid content of sculpin, which was about three times higher than for clams. Thus, the medium of choice for assessing occurrence depends largely on the constituent(s) of interest.

Collaboration


Dive into the Ian R. Waite's collaboration.

Top Co-Authors

Avatar

Jason T. May

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Kurt D. Carpenter

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Thomas F. Cuffney

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Larry R. Brown

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Timothy D. Counihan

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Jonathan G. Kennen

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David P. Larsen

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

James L. Orlando

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Kimberly A. Jones

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge