Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian W. Oliver is active.

Publication


Featured researches published by Ian W. Oliver.


Environmental Toxicology and Chemistry | 2004

Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils.

Erik Smolders; Jurgen Buekers; Ian W. Oliver; Mike J. McLaughlin

The effects of soil properties and zinc (Zn) availability on the toxicity of Zn to soil microbial processes are poorly understood. Three soil microbial processes--potential nitrification rate (PNR), substrate (glucose)-induced respiration (SIR), and a maize residue respiration (MRR)--were measured in 15 European topsoils (pH 3.0-7.5; total Zn 7-191 mg/kg) that were freshly spiked with ZnCl2. The Zn toxicity thresholds of 20 to 50% effective concentrations (EC20s and EC50s) based on total concentrations of Zn in soil varied between 5- and 26-fold among soils, depending on the assay. The Zn toxicity thresholds based on Zn concentrations in soil solution varied at least 10-fold more than corresponding total metal thresholds. Soil pH had no significant effect on soil total Zn toxicity thresholds, whereas significant positive correlations were found between these thresholds and background Zn for the PNR and SIR test (r = 0.74 and 0.71, respectively; log-log correlations). No such trend was found for the MRR test. Soil solution-based thresholds showed highly significant negative correlations with soil pH for all assays that might be explained by competition of H+ for binding sites, as demonstrated for aquatic species. The microbial assays were also applied to soils collected under galvanized pylons (three sites) where concentrations of total Zn were up to 2,100 to 3,700 mg Zn/kg. Correlations between concentrations of total Zn and microbial responses were insignificant at all sites even though spiking reference samples to equivalent concentrations reduced microbial activities up to more than 10-fold. Differences in response between spiked and field soils are partly but not completely attributed to the large differences in concentrations of Zn in soil solution. We conclude that soil pH has no significant effect on Zn toxicity to soil microbial processes in laboratory-spiked soils, and we suggest that community tolerance takes place at both background and elevated Zn concentrations in soil.


Advances in Environmental Research | 2003

The influence of sewage sludge properties on sludge-borne metal availability

Graham Merrington; Ian W. Oliver; Ronald J. Smernik; Mike J. McLaughlin

With the advent of more stringent controls on wastewater treatment, sewage sludge production in Europe and many parts of the world is increasing. With this increase comes the problem of sludge disposal, and recycling to land arguably offers an economically and environmentally sustainable option. However, a major limitation of sewage sludge reuse is the potential release of heavy metals from the sludge and heavy metal accumulation to toxic levels in topsoils. The properties of the sludge play a crucial role in determining the initial release and subsequent availability of heavy metals in amended soils. Bioavailable forms of heavy metals in recently amended soils are most likely to be those that are bioavailable in the sewage sludge. In this paper, published research on the importance of sewage sludge characteristics on metal release and bioavailability will be reviewed and contrasted with original research. A selection of sludges from around Australia has been collected for this purpose. Through the use of incubation studies, isotope dilution techniques, ion-selective electrode measurements and 13C-NMR spectroscopy, the importance of a range of sludge properties on heavy metal behaviour in sludges and sludge-amended soils is addressed.


Science of The Total Environment | 2008

An integrated colloid fractionation approach applied to the characterisation of porewater uranium-humic interactions at a depleted uranium contaminated site.

Margaret C. Graham; Ian W. Oliver; Angus B. MacKenzie; Robert M. Ellam; John G. Farmer

Methods for the fractionation of aquatic colloids require careful application to ensure efficient, accurate and reproducible separations. This paper describes the novel combination of mild colloidal fractionation and characterisation methods, namely centrifugal ultrafiltration, gel electrophoresis and gel filtration along with spectroscopic (UV-visible) and elemental (Inductively Coupled Plasma-Optical Emission Spectroscopy, Inductively Coupled Plasma-Mass Spectrometry) analysis, an approach which produced highly consistent results, providing improved confidence in these methods. Application to the study of the colloidal and dissolved components of soil porewaters from one soil at a depleted uranium (DU)-contaminated site revealed uranium (U) associations with both large (100 kDa-0.2 microm) and small (3-30 kDa) humic colloids. For a nearby soil with lower organic matter content, however, association with large (100 kDa-0.2 microm) iron (Fe)-aluminium (Al) colloids in addition to an association with small (3-30 kDa) humic colloids was observed. The integrated colloid fractionation approach presented herein can now be applied with confidence to investigate U and indeed other trace metal migration in soil and aquatic systems.


Journal of Environmental Management | 2011

Assessing effects of aerobic and anaerobic conditions on phosphorus sorption and retention capacity of water treatment residuals.

Ian W. Oliver; C. D. Grant; Robert S. Murray

Water treatment residuals (WTRs) are the by-products of drinking water clarification processes, whereby chemical flocculants such as alum or ferric chloride are added to raw water to remove suspended clay particles, organic matter and other materials and impurities. Previous studies have identified a strong phosphorus (P) fixing capacity of WTRs which has led to experimentation with their use as P-sorbing materials for controlling P discharges from agricultural and forestry land. However, the P-fixing capacity of WTRs and its capacity to retain sorbed P under anaerobic conditions have yet to be fully demonstrated, which is an issue that must be addressed for WTR field applications. This study therefore examined the capacity of WTRs to retain sorbed P and sorb further additional P from aqueous solution under both aerobic and anaerobic conditions. An innovative, low cost apparatus was constructed and successfully used to rapidly establish anoxic conditions in anaerobic treatments. The results showed that even in treatments with initial solution P concentrations set at 100 mg l(-1), soluble reactive P concentrations rapidly fell to negligible levels (due to sorption by WTRs), while total P (i.e. dissolved + particulate and colloidal P) was less than 3 mg l(-1). This equated to an added P retention rate of >98% regardless of anaerobic or aerobic status, indicating that WTRs are able to sorb and retain P in both aerobic and anaerobic conditions.


Chemosphere | 2008

Distribution and partitioning of depleted uranium (DU) in soils at weapons test ranges – Investigations combining the BCR extraction scheme and isotopic analysis

Ian W. Oliver; Margaret C. Graham; Angus B. MacKenzie; Robert M. Ellam; John G. Farmer

Depleted uranium (DU) has become a soil contaminant of considerable concern in many combat zones and weapons-testing sites around the world, including locations in Europe, the Middle East and the USA, arising from its dispersion via the application of DU-bearing munitions. Once DU is released into the environment its mobility and bioavailability will, like that of other contaminants, largely depend on the type of associations it forms in soil and on the nature of the soil components to which it binds. In this study we used the BCR sequential extraction scheme to determine the partitioning of DU amongst soil fractions of texturally varying soils from locations affected by weapons-testing activities. Isotopic analyses (MC-ICP-MS and alpha-spectrometry) were performed to verify the presence of DU in whole soils and soil fractions and to determine any preferential partitioning of the contaminant. Results identified soil organic matter as being consistently the most important component in terms of DU retention, accounting for 30-100% of DU observed in the soils examined. However, at greater distances from known contamination points, DU was also found to be largely associated with the exchangeable fraction, suggesting that DU can be mobilised and transported by surface and near-surface water and does remain in an exchangeable (and thus potentially bioavailable) form in soils.


Chemosphere | 2013

Aging of nickel added to soils as predicted by soil pH and time

Yibing Ma; Enzo Lombi; Mike J. McLaughlin; Ian W. Oliver; Annette L. Nolan; Koen Oorts; Erik Smolders

Although aging processes are important in risk assessment for metals in soils, the aging of Ni added to soils has not been studied in detail. In this study, after addition of water soluble Ni to soils, the changes over time in isotopic exchangeability, total concentrations and free Ni(2+) activity in soil pore water, were investigated in 16 European soils incubated outdoors for 18 months. The results showed that after Ni addition, concentrations of Ni in soil pore water and isotopic exchangeability of Ni in soils initially decreased rapidly. This phase was followed by further decreases in the parameters measured but these occurred at slower rates. Increasing soil pH increased the rate and extent of aging reactions. Semi-mechanistic models, based on Ni precipitation/nucleation on soil surfaces and micropore diffusion, were developed and calibrated. The initial fast processes, which were attributed to precipitation/nucleation, occurred over a short time (e.g. 1h), afterwards the slow processes were most likely controlled by micropore diffusion processes. The models were validated by comparing predicted and measured Ni aging in three additional, widely differing soils aged outdoors for periods up to 15 months in different conditions. These models could be used to scale ecotoxicological data generated in short-term studies to longer aging times.


Chemosphere | 2013

Investigating the significance of dissolved organic contaminants in aquatic environments: Coupling passive sampling with in vitro bioassays

Emmanuel S. Emelogu; Pat Pollard; Craig D. Robinson; Foppe Smedes; Lynda Webster; Ian W. Oliver; Craig McKenzie; T. B. Seiler; Henner Hollert; Colin F. Moffat

We investigated the feasibility of coupling passive sampling and in vitro bioassay techniques for both chemical and ecotoxicological assessment of complex mixtures of organic contaminants in water. Silicone rubber passive sampling devices (SR-PSDs) were deployed for 8-9 weeks in four streams and an estuary of an agricultural catchment in North East (NE) Scotland. Extracts from the SR-PSDs were analysed for freely dissolved hydrophobic organic contaminants (HOCs) and screened for wide range of pesticides. The total concentrations of dissolved PAHs (∑PAH(40), parent and branched) in the water column of the catchment varied from 38 to 69 ng L(-1), whilst PCBs (∑PCB(32)) ranged 0.02-0.06 ng L(-1). A number and level of pesticides and acid/urea herbicides of varying hydrophobicity (logK(OW)s ~2.25 to ~5.31) were also detected in the SR extracts, indicating their occurrence in the catchment. The acute toxicity and EROD induction potentials of SR extracts from the study sites were evaluated with rainbow trout liver (Oncorhynchus mykiss; RTL-W1) cell line. Acute cytotoxicity was not observed in cells following 48 h exposure to the SR extracts using neutral red uptake assay as endpoint. But, on a sublethal level, for every site, statistically significant EROD activity was observed to some degree following 72 h exposure to extracts, indicating the presence of compounds with dioxin-like effect that are bioavailable to aquatic organisms in the water bodies of the catchment. Importantly, only a small fraction of the EROD induction could be attributed to the PAHs and PCBs that were determined. This preliminary study demonstrates that the coupling of silicone rubber passive sampling techniques with in vitro bioassays is feasible and offers a cost effective early warning signal on water quality deterioration.


Journal of applied volcanology, 2013, Vol.2(1), pp.3 [Peer Reviewed Journal] | 2013

UK monitoring and deposition of tephra from the May 2011 eruption of Grímsvötn, Iceland

John A. Stevenson; Susan C. Loughlin; Anna Font; Gary W. Fuller; Alison MacLeod; Ian W. Oliver; Ben Jackson; Claire J. Horwell; T. Thordarson; Ian Dawson

Mapping the transport and deposition of tephra is important for the assessment of an eruption’s impact on health, transport, vegetation and infrastructure, but it is challenging at large distances from a volcano (> 1000 km), where it may not be visible to the naked eye. Here we describe a range of methods used to quantify tephra deposition and impact on air quality during the 21–28 May 2011 explosive basaltic eruption of Grímsvötn volcano, Iceland. Tephra was detected in the UK with tape-on-paper samples, rainwater samples, rainwater chemistry analysis, pollen slides and air quality measurements. Combined results show that deposition was mainly in Scotland, on 23–25 May. Deposition was patchy, with adjacent locations recording different results. Tape-on-paper samples, collected by volunteer citizen scientists, and giving excellent coverage across the UK, showed deposition at latitudes >55°N, mainly on 24 May. Rainwater samples contained ash grains mostly 20–30 μm long (maximum recorded grainsize 80 μm) with loadings of up to 116 grainscm-2. Analysis of rainwater chemistry showed high concentrations of dissolved Fe and Al in samples from N Scotland on 24–27 May. Pollen slides recorded small glass shards (3–4 μm long) deposited during rainfall on 24–25 May and again on 27 May. Air quality monitoring detected increased particulate matter concentrations in many parts of the country. An hourly concentration of particles < 10 μm in diameter (PM10) of ∼413 μgm-3, was measured in Aberdeen at 02:00hrs on 24 May 2011. Significant peaks of non-anthropogenic PM, which is most likely to have a volcanic origin, could be tracked as far south as the English Midlands (> 53°N) on 24 May but no negative effects on health were reported. Although the eruption column reached altitudes of 20 km above sea level, air mass trajectories suggest that only tephra from the lowest 4 km above sea level of the eruption plume was transported to the UK. This demonstrates that even low plumes could deliver tephra to the UK and suggests that the relative lack of basaltic tephra in the tephrochronological record is not due to transport processes.


Science of The Total Environment | 2011

Mechanisms controlling lateral and vertical porewater migration of depleted uranium (DU) at two UK weapons testing sites

Margaret C. Graham; Ian W. Oliver; Angus B. MacKenzie; Robert M. Ellam; John G. Farmer

Uranium associations with colloidal and truly dissolved soil porewater components from two Ministry of Defence Firing Ranges in the UK were investigated. Porewater samples from 2-cm depth intervals for three soil cores from each of the Dundrennan and Eskmeals ranges were fractionated using centrifugal ultrafiltration (UF) and gel electrophoresis (GE). Soil porewaters from a transect running downslope from the Dundrennan firing area towards a stream (Dunrod Burn) were examined similarly. Uranium concentrations and isotopic composition were determined using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Multi-Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS), respectively. The soils at Dundrennan were Fe- and Al-rich clay-loam soils whilst at Eskmeals, they were Fe- and Al-poor sandy soils; both, however, had similar organic matter contents due to the presence of a near-surface peaty layer at Eskmeals. These compositional features influenced the porewater composition and indeed the associations of U (and DU). In general, at Dundrennan, U was split between large (100kDa-0.2μm) and small (3-30kDa) organic colloids whilst at Eskmeals, U was mainly in the small colloidal and truly dissolved fractions. Especially below 10cm depth, association with large Fe/Al/organic colloids was considered to be a precursor to the removal of U from the Dundrennan porewaters to the solid phase. In contrast, the association of U with small organic colloids was largely responsible for inhibiting attenuation in the Eskmeals soils. Lateral migration of U (and DU) through near-surface Dundrennan soils will involve both large and small colloids but, at depth, transport of the smaller amounts of U remaining in the porewaters may involve large colloids only. For one of the Dundrennan cores the importance of redox-related processes for the re-mobilisation of DU was also indicated as Mn(IV) reduction resulted in the release of both Mn(II) and U(VI) into the truly dissolved phase.


Environmental Chemistry | 2004

Australian Biosolids: Characterization and Determination of Available Copper

Ian W. Oliver; Graham Merrington; Mike J. McLaughlin

Environmental Context. Land application of sewage-derived biosolids is both an inexpensive method to dispose of waste and a simple way to increase soil fertility and stability. However, biosolids often contain high concentrations of heavy metals, but not all of the metals are immediately available for uptake by the soil or other organisms. To determine if this toxicologic risk outweighs the benefits, the degree of ecologically available metal, rather than simply the entire metal content, must be known in both the as-disposed and worst conditions scenarios. Application of these principles requires regulatory bodies to amend their guidelines. Abstract. Application of biosolids to agricultural land provides a low-cost disposal option with many potential benefits to soil. However, the practice may result in accumulations of potentially toxic heavy metals, and thus regulations are in place to limit the amount of metals applied to soil in this way. Current Australian regulations are not ideal because they are based on total metal concentrations in soils and biosolids, rather than the fraction that is ecologically available (the fraction accessible by organisms). Therefore more environmentally appropriate regulations, based on the available metal portion, need to be devised. However, before this is possible, more needs to be known about the characteristics of Australian biosolids, including the factors that influence the availability of biosolid metals. Copper is a metal of great concern because of its commonly high concentration in biosolids and because of its relatively high toxicity to certain groups of bacteria and fungi. Therefore an investigation was conducted to characterize the range of properties observed in Australian biosolids, and to determine the fraction of available metals and the factors that influence it (particularly in the case of copper). General properties such as pH, electrical conductivity, organic carbon, and total metal concentrations were measured. Availability of copper was specifically measured using isotopic exchange techniques and a Cu2+ ion-selective electrode. Results showed that total copper concentration and Cu2+ activity could be used to predict available copper. A new system of biosolid land-use regulation that incorporates the available metal fraction and a pH protection factor is proposed.

Collaboration


Dive into the Ian W. Oliver's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Smolders

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jurgen Buekers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enzo Lombi

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Yibing Ma

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge