Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margaret C. Graham is active.

Publication


Featured researches published by Margaret C. Graham.


Neuroscience | 2003

Dehydroepiandrosterone 7-hydroxylase cyp7b: predominant expression in primate hippocampus and reduced expression in alzheimer's disease☆

Joyce L.W. Yau; Sigbritt Rasmuson; Ruth Andrew; Margaret C. Graham; June Noble; Tommy Olsson; Eberhard Fuchs; Richard Lathe; Jonathan R. Seckl

Neurosteroids such as dehydroepiandrosterone (DHEA), pregnenolone and 17beta-estradiol are synthesized by cytochrome P450s from endogenous cholesterol. We previously reported a new cytochrome P450 enzyme, CYP7B, highly expressed in rat and mouse brain that metabolizes DHEA and related steroids by hydroxylation at the 7alpha position. Such 7-hydroxylation can enhance DHEA bioactivity in vivo. Here we show that the reaction is conserved across mammalian species: in addition to mouse and rat, DHEA hydroxylation activity was present in brain extracts from sheep, marmoset and human. Northern blotting using a human CYP7B complementary deoxyribonucleic acid (cDNA) probe confirmed the presence of CYP7B mRNA in marmoset and human hippocampus; CYP7B mRNA was present in marmoset cerebellum and brainstem, with lower levels in hypothalamus and cortex. In situ hybridization to human brain revealed higher levels of CYP7B mRNA in the hippocampus than in cerebellum, cortex, or other brain regions. We also measured CYP7B expression in Alzheimers disease (AD). CYP7B mRNA was significantly decreased (approximately 50% decline; P<0.05) in dentate neurons from AD subjects compared with controls. A decline in CYP7B activity may contribute the loss of effects of DHEA with ageing and perhaps to the pathophysiology of AD.


Environmental Geochemistry and Health | 1999

The lead content and isotopic composition of british coals and their implications for past and present releases of lead to the UK environment

John G. Farmer; Lorna J. Eades; Margaret C. Graham

More than 60 coal samples, predominantly from the principal coalfields of England and Wales (25) and Scotland (30), were analysed for lead by AAS and for stable lead isotopes by ICP‐MS. While the average lead content of Scottish coal, 23.9 mg kg−1, was more than double that of coal from England and Wales, 11.0 mg kg−1, the corresponding mean 206Pb/207Pb ratios (± 1 s.d.) were nearly identical, at 1.181±0.011 and 1.184±0.006, respectively. In the light of the lead isotopic signatures of British coals and of both indigenous (206Pb/207Pb ∼ 1.17) and imported Australian (206Pb/207Pb ∼ 1.04) lead ores, an approach based on estimated lead emissions from these sources and the deconvolution of the historical lead and 206Pb/207Pb records preserved in lake sediments, peat bogs and archival herbage material indicates that coal combustion became an increasingly significant contributor to atmospheric lead deposition in the UK during the period 1830–1930, especially after the onset of England’s decline as a major location of lead mining and smelting in the late‐19th Century. Since 1930 and the introduction of leaded petrol, the atmospheric 206Pb/207Pb ratio in the UK has been strongly influenced by car‐exhaust emissions of comparatively 206Pb‐depleted lead of predominantly Australian origin, counter‐balanced to some extent by coal‐combustion emissions of lead, although these have fallen dramatically since the mid‐1950s. Nevertheless, with the introduction and substantial uptake of unleaded petrol in the UK during the last decade, even the declining releases from coal, along with contributions from other sources, are continuing to affect the atmospheric lead content and 206Pb/207Pb ratio.


Journal of Environmental Monitoring | 2000

The changing nature of the 206Pb/207Pb isotopic ratio of lead in rainwater, atmospheric particulates, pine needles and leaded petrol in Scotland, 1982–1998

John G. Farmer; Lorna J. Eades; Margaret C. Graham; Jeffrey R. Bacon

The inductively coupled plasma-mass spectrometry (ICP-MS)-determined 206Pb/207Pb ratio of 145 samples of rainwater collected at 25 locations around Scotland during December 1997 and January 1998 and at three longterm monitoring stations in the northeast, central belt and southeast of the country from November 1997 to December 1998 averaged 1.144+/-0.017 (1 s). This represents a significant increase from the mean value of 1.120+/-0.016 recorded for the long-term sites in 1989 1991, only partly attributable to a concomitant increase in the 206Pb/207Pb ratio of leaded petrol from 1.075+/-0.013 to 1.088+/-0.007. The rainwater 206Pb/207Pb data for the late 1990s also contrast markedly with the lower 206Pb/207Pb ratios found for pine needle and atmospheric particulate samples from Scotland (e.g. Glasgow: 1.085+/-0.012 in 1985-1986, 1.099+/-0.007 in 1991-1992), England and Western Europe in this study for the period 1982-1992 when emissions of lead to the atmosphere from petrol-engined vehicles in the UK were approximately 2-9 times higher. The observed change in the lead isotopic signature of rainwater predominantly reflects the impact of measures, such as the introduction and growing uptake of unleaded petrol, to reduce car exhaust emissions of lead to the atmosphere in the UK. Based on the rainwater data, source apportionment calculations suggest a general decline in the contribution of leaded petrol to atmospheric lead in Scotland from 53-61% in 1989-1991 to 32-45% in 1997-1998, with a corresponding decline in the urban environment from 84-86% to 48-58%.


Journal of Environmental Monitoring | 2005

A comparison of antimony and lead profiles over the past 2500 years in Flanders Moss ombrotrophic peat bog, Scotland

Joanna M. Cloy; John G. Farmer; Margaret C. Graham; Angus B. MacKenzie; Gordon Cook

Two cores collected in 2001 and 2004 from Flanders Moss ombrotrophic peat bog in central Scotland were dated (14C, 210Pb) and analysed (ICP-OES, ICP-MS) to derive and compare the historical atmospheric deposition records of Sb and Pb over the past 2500 years. After correction, via Sc, for contributions from soil dust, depositional fluxes of Sb and Pb peaked from ca. 1920-1960 A.D., with >95% of the anthropogenic inventories deposited post-1800 A.D. Over the past two centuries, trends in Sb and Pb deposition have been broadly similar, with fluctuations in the anthropogenic Sb/Pb ratio reflecting temporal variations in the relative input from emission sources such as the mining and smelting of Pb ores (in which Sb is commonly present, as at Leadhills/Wanlockhead in southern Scotland), combustion of coal (for which the Sb/Pb ratio is approximately an order of magnitude greater than in Pb ores) and exhaust emissions (Pb from leaded petrol) and abrasion products from the brake linings (Sb from heat-resistant Sb compounds) of automobiles. The influence of leaded petrol has been most noticeable in recent decades, firstly through the resultant minima in Sb/Pb and 206Pb/207Pb ratios (the latter arising from the use of less radiogenic Australian Pb in alkylPb additives) and then, during its phasing out and the adoption of unleaded petrol, complete by 2000 A.D., the subsequent increase in both Sb/Pb and 206Pb/207Pb ratios. The extent of the 20th century maximum anthropogenic enrichment of Sb and Pb, relative to the natural Sc-normalised levels of the Upper Continental Crust, was similar at approximately 50- to 100-fold. Prior to 1800 A.D., the influence of metallurgical activities on Sb and Pb concentrations in the peat cores during both the Mediaeval and Roman/pre-Roman periods was discernible, small Sb and Pb peaks during the latter appearing attributable, on the basis of Pb isotopic composition, to the mining/smelting of Pb ores indigenous to Britain.


Journal of Environmental Monitoring | 2002

Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites

John G. Farmer; R.P. Thomas; Margaret C. Graham; J.S. Geelhoed; David G. Lumsdon; E. Paterson

Chromium concentrations of up to 91 mg l(-1) were found by ICP-OES for ground water from nine boreholes at four landfill sites in an area of S.E. Glasgow/S. Lanarkshire where high-lime chromite ore processing residue (COPR) from a local chemical works had been deposited from 1830 to 1968. Surface water concentrations of up to 6.7 mg l(-1) in a local tributary stream fell to 0.11 mg l(-1) in the River Clyde. Two independent techniques of complexation/colorimetry and speciated isotope dilution mass spectrometry (SIDMS) showed that Cr was predominantly (>90%) in hexavalent form (CrVI) as CrO4(2-), as anticipated at the high pH (7.5-12.5) of the sites. Some differences between the implied and directly determined concentrations of dissolved CrIII, however, appeared related to the total organic carbon (TOC) content. This was most significant for the ground water from one borehole that had the highest TOC concentration of 300 mg l(-1) and at which < 3% of Cr was in the form of CrVI. Subsequent ultrafiltration produced significant decreases in Cr concentration with decreasing size fractions, e.g. <0.45 microm, < 100 kDa, <30 kDa and < 1 kDa by the tangential-flow method. As this appeared related more to concentrations of humic substances than of TOC per se, horizontal bed gel electrophoresis of freeze-dried ultrafilter retentates was carried out to further characterise the CrIII-organic complex. This showed for the main Cr-containing fraction, 100 kDa-0.45 microm, that the Cr was associated with a dark brown band characteristic of organic (humic) matter. Comparison of gel electrophoresis and FTIR results for ultrafilter retentates of ground water from this borehole with those for a borehole at another site where CrVI predominated suggested the influence of carboxylate groups, both in reducing CrVI and in forming soluble CrIII-humic complexes. The implications of this for remediation strategies (especially those based on the addition of organic matter) designed to reduce highly mobile and carcinogenic Cr(VI)O4(2-) to the much less harmful CrIII as insoluble Cr(OH)3 are discussed.


Science of The Total Environment | 2009

Historical accumulation rates of mercury in four Scottish ombrotrophic peat bogs over the past 2000 years

John G. Farmer; Peter Anderson; Joanna M. Cloy; Margaret C. Graham; Angus B. MacKenzie; Gordon Cook

The historical accumulation rates of mercury resulting from atmospheric deposition to four Scottish ombrotrophic peat bogs, Turclossie Moss (northeast Scotland), Flanders Moss (west-central), Red Moss of Balerno (east-central) and Carsegowan Moss (southwest), were determined via analysis of (210)Pb- and (14)C-dated cores up to 2000 years old. Average pre-industrial rates of mercury accumulation of 4.5 and 3.7 microg m(-2) y(-1) were obtained for Flanders Moss (A.D. 1-1800) and Red Moss of Balerno (A.D. 800-1800), respectively. Thereafter, mercury accumulation rates increased to typical maximum values of 51, 61, 77 and 85 microg m(-2) y(-1), recorded at different times possibly reflecting local/regional influences during the first 70 years of the 20th century, at the four sites (TM, FM, RM, CM), before declining to a mean value of 27+/-15 microg m(-2) y(-1) during the late 1990s/early 2000s. Comparison of such trends for mercury with those for lead and arsenic in the cores and also with direct data for the declining UK emissions of these three elements since 1970 suggested that a substantial proportion of the mercury deposited at these sites over the past few decades originated from outwith the UK, with contributions to wet and dry deposition arising from long-range transport of mercury released by sources such as combustion of coal. Confidence in the chronological reliability of these core-derived trends in absolute and relative accumulation of mercury, at least since the 19th century, was provided by the excellent agreement between the corresponding detailed and characteristic temporal trends in the (206)Pb/(207)Pb isotopic ratio of lead in the (210)Pb-dated Turclossie Moss core and those in archival Scottish Sphagnum moss samples of known date of collection. The possibility of some longer-term loss of volatile mercury released from diagenetically altered older peat cannot, however, be excluded by the findings of this study.


Science of The Total Environment | 2008

An integrated colloid fractionation approach applied to the characterisation of porewater uranium-humic interactions at a depleted uranium contaminated site.

Margaret C. Graham; Ian W. Oliver; Angus B. MacKenzie; Robert M. Ellam; John G. Farmer

Methods for the fractionation of aquatic colloids require careful application to ensure efficient, accurate and reproducible separations. This paper describes the novel combination of mild colloidal fractionation and characterisation methods, namely centrifugal ultrafiltration, gel electrophoresis and gel filtration along with spectroscopic (UV-visible) and elemental (Inductively Coupled Plasma-Optical Emission Spectroscopy, Inductively Coupled Plasma-Mass Spectrometry) analysis, an approach which produced highly consistent results, providing improved confidence in these methods. Application to the study of the colloidal and dissolved components of soil porewaters from one soil at a depleted uranium (DU)-contaminated site revealed uranium (U) associations with both large (100 kDa-0.2 microm) and small (3-30 kDa) humic colloids. For a nearby soil with lower organic matter content, however, association with large (100 kDa-0.2 microm) iron (Fe)-aluminium (Al) colloids in addition to an association with small (3-30 kDa) humic colloids was observed. The integrated colloid fractionation approach presented herein can now be applied with confidence to investigate U and indeed other trace metal migration in soil and aquatic systems.


Chemosphere | 2008

Distribution and partitioning of depleted uranium (DU) in soils at weapons test ranges – Investigations combining the BCR extraction scheme and isotopic analysis

Ian W. Oliver; Margaret C. Graham; Angus B. MacKenzie; Robert M. Ellam; John G. Farmer

Depleted uranium (DU) has become a soil contaminant of considerable concern in many combat zones and weapons-testing sites around the world, including locations in Europe, the Middle East and the USA, arising from its dispersion via the application of DU-bearing munitions. Once DU is released into the environment its mobility and bioavailability will, like that of other contaminants, largely depend on the type of associations it forms in soil and on the nature of the soil components to which it binds. In this study we used the BCR sequential extraction scheme to determine the partitioning of DU amongst soil fractions of texturally varying soils from locations affected by weapons-testing activities. Isotopic analyses (MC-ICP-MS and alpha-spectrometry) were performed to verify the presence of DU in whole soils and soil fractions and to determine any preferential partitioning of the contaminant. Results identified soil organic matter as being consistently the most important component in terms of DU retention, accounting for 30-100% of DU observed in the soils examined. However, at greater distances from known contamination points, DU was also found to be largely associated with the exchangeable fraction, suggesting that DU can be mobilised and transported by surface and near-surface water and does remain in an exchangeable (and thus potentially bioavailable) form in soils.


British Journal of Cancer | 1996

In vivo pharmacology and anti-tumour evaluation of the tyrphostin tyrosine kinase inhibitor RG13022

McLeod Hl; Val Brunton; N Eckardt; Martin J. Lear; David J. Robins; Paul Workman; Margaret C. Graham

Amplification and increased expression of many growth factor receptors, including the epidermal growth factor receptor (EGFR), has been observed in human tumours. One therapeutic strategy for overcoming EGF autocrine control of tumour growth is inhibition of EGFR protein tyrosine kinase (PTK). A series of low molecular weight molecules have been identified which inhibit the EGFR PTK in vitro and demonstrate antiproliferative activity against human cancer cell lines with high expression of EGFR. A significant growth delay in squamous cancer xenografts has been reported for one of these compounds, the tyrphostin RG13022. Based on these encouraging results, we sought to confirm the activity of RG13022 in vivo and relate the effects to the in vivo plasma disposition. RG13022 and three additional peaks were detected by HPLC following intraperitoneal administration of 20 mg kg-1 RG13022 in MF1 nu/nu mice. RG13022 demonstrated rapid biexponential elimination from plasma with a terminal half-life of 50.4 min. RG13022 plasma concentrations were less than 1 microM by 20 min post injection. A primary product was identified as the geometrical isomer (E)-RG13022. Both RG13022 and its geometrical isomer inhibited DNA synthesis in HN5 cells after a 24 h in vitro incubation (IC50 = 11 microM and 38 microM respectively). Neither RG13022 nor its geometrical isomer displayed significant cytotoxicity. RG13022 had no influence on the growth of HN5 tumours when administered chronically, starting either on the day of tumour inoculation or after establishment of tumour xenografts. The rapid in vivo elimination of RG13022 has potential significance to the development of this and other related tyrphostin tyrosine kinase inhibitors, as plasma concentrations fell below that required for in vitro activity by 20 min post injection. The lack of in vivo tumour growth delay suggests that a more optimal administration schedule for RG13022 would include more frequent injections or continuous administration. An improved formulation for RG13022 is therefore required before further development of this or other similar protein tyrosine kinase inhibitors can be made. Alternative strategies should also be sought which display longer lasting in vivo exposures.


Science of The Total Environment | 2011

Mechanisms controlling lateral and vertical porewater migration of depleted uranium (DU) at two UK weapons testing sites

Margaret C. Graham; Ian W. Oliver; Angus B. MacKenzie; Robert M. Ellam; John G. Farmer

Uranium associations with colloidal and truly dissolved soil porewater components from two Ministry of Defence Firing Ranges in the UK were investigated. Porewater samples from 2-cm depth intervals for three soil cores from each of the Dundrennan and Eskmeals ranges were fractionated using centrifugal ultrafiltration (UF) and gel electrophoresis (GE). Soil porewaters from a transect running downslope from the Dundrennan firing area towards a stream (Dunrod Burn) were examined similarly. Uranium concentrations and isotopic composition were determined using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Multi-Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS), respectively. The soils at Dundrennan were Fe- and Al-rich clay-loam soils whilst at Eskmeals, they were Fe- and Al-poor sandy soils; both, however, had similar organic matter contents due to the presence of a near-surface peaty layer at Eskmeals. These compositional features influenced the porewater composition and indeed the associations of U (and DU). In general, at Dundrennan, U was split between large (100kDa-0.2μm) and small (3-30kDa) organic colloids whilst at Eskmeals, U was mainly in the small colloidal and truly dissolved fractions. Especially below 10cm depth, association with large Fe/Al/organic colloids was considered to be a precursor to the removal of U from the Dundrennan porewaters to the solid phase. In contrast, the association of U with small organic colloids was largely responsible for inhibiting attenuation in the Eskmeals soils. Lateral migration of U (and DU) through near-surface Dundrennan soils will involve both large and small colloids but, at depth, transport of the smaller amounts of U remaining in the porewaters may involve large colloids only. For one of the Dundrennan cores the importance of redox-related processes for the re-mobilisation of DU was also indicated as Mn(IV) reduction resulted in the release of both Mn(II) and U(VI) into the truly dissolved phase.

Collaboration


Dive into the Margaret C. Graham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian W. Oliver

Scottish Environment Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge