Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iannis Aifantis is active.

Publication


Featured researches published by Iannis Aifantis.


Cancer Cell | 2011

Tet2 Loss Leads to Increased Hematopoietic Stem Cell Self-Renewal and Myeloid Transformation

Kelly Moran-Crusio; Linsey Reavie; Alan Shih; Omar Abdel-Wahab; Delphine Ndiaye-Lobry; Camille Lobry; Maria E. Figueroa; Aparna Vasanthakumar; Jay Patel; Xinyang Zhao; Fabiana Perna; Suveg Pandey; Jozef Madzo; Chun-Xiao Song; Qing Dai; Chuan He; Sherif Ibrahim; Miloslav Beran; Jiri Zavadil; Stephen D. Nimer; Ari Melnick; Lucy A. Godley; Iannis Aifantis; Ross L. Levine

Somatic loss-of-function mutations in the ten-eleven translocation 2 (TET2) gene occur in a significant proportion of patients with myeloid malignancies. Although there are extensive genetic data implicating TET2 mutations in myeloid transformation, the consequences of Tet2 loss in hematopoietic development have not been delineated. We report here an animal model of conditional Tet2 loss in the hematopoietic compartment that leads to increased stem cell self-renewal in vivo as assessed by competitive transplant assays. Tet2 loss leads to a progressive enlargement of the hematopoietic stem cell compartment and eventual myeloproliferation in vivo, including splenomegaly, monocytosis, and extramedullary hematopoiesis. In addition, Tet2(+/-) mice also displayed increased stem cell self-renewal and extramedullary hematopoiesis, suggesting that Tet2 haploinsufficiency contributes to hematopoietic transformation in vivo.


Journal of Experimental Medicine | 2007

The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia

Benjamin J. Thompson; Silvia Buonamici; Maria Luisa Sulis; Teresa Palomero; Tomas Vilimas; Giuseppe Basso; Adolfo A. Ferrando; Iannis Aifantis

Recent studies have shown that activating mutations of NOTCH1 are responsible for the majority of T cell acute lymphoblastic leukemia (T-ALL) cases. Most of these mutations truncate its C-terminal domain, a region that is important for the NOTCH1 proteasome-mediated degradation. We report that the E3 ligase FBW7 targets NOTCH1 for ubiquitination and degradation. Our studies map in detail the amino acid degron sequence required for NOTCH1–FBW7 interaction. Furthermore, we identify inactivating FBW7 mutations in a large fraction of human T-ALL lines and primary leukemias. These mutations abrogate the binding of FBW7 not only to NOTCH1 but also to the two other characterized targets, c-Myc and cyclin E. The majority of the FBW7 mutations were present during relapse, and they were associated with NOTCH1 HD mutations. Interestingly, most of the T-ALL lines harboring FBW7 mutations were resistant to γ-secretase inhibitor treatment and this resistance appeared to be related to the stabilization of the c-Myc protein. Our data suggest that FBW7 is a novel tumor suppressor in T cell leukemia, and implicate the loss of FBW7 function as a potential mechanism of drug resistance in T-ALL.


Nature Medicine | 2009

γ-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia

Pedro J. Real; Valeria Tosello; Teresa Palomero; Mireia Castillo; Eva Hernando; Elisa de Stanchina; Maria Luisa Sulis; Kelly Barnes; Catherine M. Sawai; Irene Homminga; Jules P.P. Meijerink; Iannis Aifantis; Giuseppe Basso; Carlos Cordon-Cardo; Walden Ai; Adolfo A. Ferrando

Gamma-secretase inhibitors (GSIs) block the activation of the oncogenic protein Notch homolog-1 (NOTCH1) in T cell acute lymphoblastic leukemia (T-ALL). However, limited antileukemic cytotoxicity and severe gastrointestinal toxicity have restricted the clinical application of these targeted drugs. Here we show that combination therapy with GSIs plus glucocorticoids can improve the antileukemic effects of GSIs and reduce their gut toxicity in vivo. Inhibition of NOTCH1 signaling in glucocorticoid-resistant T-ALL restored glucocorticoid receptor autoupregulation and induced apoptotic cell death through induction of the gene encoding BCL-2–like apoptosis initiator-11 (BCL2L11). GSI treatment resulted in cell cycle arrest and accumulation of goblet cells in the gut mediated by upregulation of the gene encoding the transcription factor Krüppel-like factor-4 (Klf4), a negative regulator of the cell cycle required for goblet cell differentiation. In contrast, glucocorticoid treatment induced transcriptional upregulation of cyclin D2 (Ccnd2) and protected mice from developing the intestinal goblet cell metaplasia typically induced by inhibition of NOTCH signaling with GSIs. These results support a role for glucocorticoids plus GSIs in the treatment of glucocorticoid-resistant T-ALL.Summary Gamma-secretase inhibitors (GSIs) block the activation of oncogenic NOTCH1 in T-cell acute lymphoblastic leukemia (T-ALL). However, limited antileukemic cytotoxicity and severe gastrointestinal toxicity have restricted the clinical application of these targeted drugs. Here we show that combination therapy with GSIs plus glucocorticoids can improve the antileukemic effects of GSIs and reduce their gut toxicity in vivo. Inhibition of NOTCH1 signaling in glucocorticoid-resistant T-ALL restored glucocorticoid receptor auto-up-regulation and induced apoptotic cell death through induction of BIM expression. GSI treatment resulted in cell cycle arrest and accumulation of goblet cells in the gut mediated by upregulation of Klf4, a negative regulator of cell cycle required for goblet cell differentiation. In contrast, glucocorticoid treatment induced transcriptional upregulation of Ccnd2 and protected mice from developing intestinal goblet cell metaplasia typically induced by inhibition of NOTCH signaling with GSIs. These results support a role for glucocorticoids plus GSIs in the treatment of glucocorticoid-resistant T-ALL.


Nature Reviews Immunology | 2008

Molecular pathogenesis of T-cell leukaemia and lymphoma

Iannis Aifantis; Elizabeth A. Raetz; Silvia Buonamici

T-cell acute lymphoblastic leukaemia (T-ALL) is induced by the transformation of T-cell progenitors and mainly occurs in children and adolescents. Although treatment outcome in patients with T-ALL has improved in recent years, patients with relapsed disease continue to have a poor prognosis. It is therefore important to understand the molecular pathways that control both the induction of transformation and the treatment of relapsed disease. In this Review, we focus on the molecular mechanisms responsible for disease induction and maintenance. We also compare the physiological progression of T-cell differentiation with T-cell transformation, highlighting the close relationship between these two processes. Finally, we discuss potential new therapies that target oncogenic pathways in T-ALL.


Nature Medicine | 2012

Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia

Panagiotis Ntziachristos; Aristotelis Tsirigos; Pieter Van Vlierberghe; Jelena Nedjic; Thomas Trimarchi; Maria Sol Flaherty; Dolors Ferres-Marco; Vanina Gabriela Da Ros; Zuojian Tang; Jasmin Siegle; Patrik Asp; Michael Hadler; Isaura Rigo; Kim De Keersmaecker; Jay Patel; Tien Huynh; Filippo Utro; Sandrine Poglio; Jeremy B. Samon; Elisabeth Paietta; Janis Racevskis; Jacob M. Rowe; Raul Rabadan; Ross L. Levine; Stuart M. Brown; Françoise Pflumio; M.I. Domínguez; Adolfo A. Ferrando; Iannis Aifantis

T-cell acute lymphoblastic leukemia (T-ALL) is an immature hematopoietic malignancy driven mainly by oncogenic activation of NOTCH1 signaling1. In this study we report the presence of loss-of-function mutations and deletions of EZH2 and SUZ12 genes, encoding critical components of the Polycomb Repressive Complex 2 (PRC2) complex2,3, in 25% of T-ALLs. To further study the role of the PRC2 complex in T-ALL, we used NOTCH1-induced animal models of the disease, as well as human T-ALL samples, and combined locus-specific and global analysis of NOTCH1-driven epigenetic changes. These studies demonstrated that activation of NOTCH1 specifically induces loss of the repressive mark lysine-27 tri-methylation of histone 3 (H3K27me3)4 by antagonizing the activity of the Polycomb Repressive Complex 2 (PRC2) complex. These studies demonstrate a tumor suppressor role for the PRC2 complex in human leukemia and suggest a hitherto unrecognized dynamic interplay between oncogenic NOTCH1 and PRC2 function for the regulation of gene expression and cell transformation.


Nature | 2011

A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia

Apostolos Klinakis; Camille Lobry; Omar Abdel-Wahab; Philmo Oh; Hiroshi Haeno; Silvia Buonamici; Inge Vande Walle; Severine Cathelin; Thomas Trimarchi; Elisa Araldi; Cynthia Liu; Sherif Ibrahim; M. Beran; Jiri Zavadil; Argiris Efstratiadis; Tom Taghon; Franziska Michor; Ross L. Levine; Iannis Aifantis

Notch signalling is a central regulator of differentiation in a variety of organisms and tissue types. Its activity is controlled by the multi-subunit γ-secretase (γSE) complex. Although Notch signalling can play both oncogenic and tumour-suppressor roles in solid tumours, in the haematopoietic system it is exclusively oncogenic, notably in T-cell acute lymphoblastic leukaemia, a disease characterized by Notch1-activating mutations. Here we identify novel somatic-inactivating Notch pathway mutations in a fraction of patients with chronic myelomonocytic leukaemia (CMML). Inactivation of Notch signalling in mouse haematopoietic stem cells (HSCs) results in an aberrant accumulation of granulocyte/monocyte progenitors (GMPs), extramedullary haematopoieisis and the induction of CMML-like disease. Transcriptome analysis revealed that Notch signalling regulates an extensive myelomonocytic-specific gene signature, through the direct suppression of gene transcription by the Notch target Hes1. Our studies identify a novel role for Notch signalling during early haematopoietic stem cell differentiation and suggest that the Notch pathway can play both tumour-promoting and -suppressive roles within the same tissue.


Nature Medicine | 2007

Targeting the NF-κB signaling pathway in Notch1-induced T-cell leukemia

Tomas Vilimas; Joaquina Mascarenhas; Teresa Palomero; Malay Mandal; Silvia Buonamici; Fanyong Meng; Benjamin J. Thompson; Christina Spaulding; Sami Macaroun; Maria-Luisa Alegre; Barbara L. Kee; Adolfo A. Ferrando; Lucio Miele; Iannis Aifantis

T-cell acute lymphoblastic leukemia (T-ALL), unlike other ALL types, is only infrequently associated with chromosomal aberrations, but it was recently shown that most individuals with T-ALL carry activating mutations in the NOTCH1 gene. However, the signaling pathways and target genes responsible for Notch1-induced neoplastic transformation remain undefined. We report here that constitutively active Notch1 activates the NF-κB pathway transcriptionally and via the IκB kinase (IKK) complex, thereby causing increased expression of several well characterized target genes of NF-κB in bone marrow hematopoietic stem cells and progenitors. Our observations demonstrate that the NF-κB pathway is highly active in established human T-ALL and that inhibition of the pathway can efficiently restrict tumor growth both in vitro and in vivo. These findings identify NF-κB as one of the major mediators of Notch1-induced transformation and suggest that the NF-κB pathway is a potential target of future therapies of T-ALL.


Journal of Experimental Medicine | 2011

Oncogenic and tumor suppressor functions of Notch in cancer: it’s NOTCH what you think

Camille Lobry; Philmo Oh; Iannis Aifantis

Aifantis and colleagues examine the conflicting roles of Notch signaling in various cancer types.


Nature | 2009

CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia.

Silvia Buonamici; Thomas Trimarchi; Maria Grazia Ruocco; Linsey Reavie; Severine Cathelin; Brenton G. Mar; Apostolos Klinakis; Yevgeniy Lukyanov; Jen Chieh Tseng; Filiz Sen; Eric A. Gehrie; Mengling Li; Elizabeth W. Newcomb; Jiri Zavadil; Daniel Meruelo; Martin Lipp; Sherif Ibrahim; Argiris Efstratiadis; David Zagzag; Jonathan S. Bromberg; Michael L. Dustin; Iannis Aifantis

T-cell acute lymphoblastic leukaemia (T-ALL) is a blood malignancy afflicting mainly children and adolescents. T-ALL patients present at diagnosis with increased white cell counts and hepatosplenomegaly, and are at an increased risk of central nervous system (CNS) relapse. For that reason, T-ALL patients usually receive cranial irradiation in addition to intensified intrathecal chemotherapy. The marked increase in survival is thought to be worth the considerable side-effects associated with this therapy. Such complications include secondary tumours, neurocognitive deficits, endocrine disorders and growth impairment. Little is known about the mechanism of leukaemic cell infiltration of the CNS, despite its clinical importance. Here we show, using T-ALL animal modelling and gene-expression profiling, that the chemokine receptor CCR7 (ref. 5) is the essential adhesion signal required for the targeting of leukaemic T-cells into the CNS. Ccr7 gene expression is controlled by the activity of the T-ALL oncogene Notch1 and is expressed in human tumours carrying Notch1-activating mutations. Silencing of either CCR7 or its chemokine ligand CCL19 (ref. 6) in an animal model of T-ALL specifically inhibits CNS infiltration. Furthermore, murine CNS-targeting by human T-ALL cells depends on their ability to express CCR7. These studies identify a single chemokine–receptor interaction as a CNS ‘entry’ signal, and open the way for future pharmacological targeting. Targeted inhibition of CNS involvement in T-ALL could potentially decrease the intensity of CNS-targeted therapy, thus reducing its associated short- and long-term complications.


Cancer Cell | 2010

The Notch/Hes1 Pathway Sustains NF-κB Activation through CYLD Repression in T Cell Leukemia

Lluis Espinosa; Severine Cathelin; Teresa D'Altri; Thomas Trimarchi; Alexander Statnikov; Jordi Guiu; Verónica Rodilla; Julia Inglés-Esteve; Josep Nomdedeu; Beatriz Bellosillo; Carles Besses; Omar Abdel-Wahab; Nicole Kucine; Shao Cong Sun; Guangchan Song; Charles C. Mullighan; Ross L. Levine; Klaus Rajewsky; Iannis Aifantis; Anna Bigas

It was previously shown that the NF-κB pathway is downstream of oncogenic Notch1 in T cell acute lymphoblastic leukemia (T-ALL). Here, we visualize Notch-induced NF-κB activation using both human T-ALL cell lines and animal models. We demonstrate that Hes1, a canonical Notch target and transcriptional repressor, is responsible for sustaining IKK activation in T-ALL. Hes1 exerts its effects by repressing the deubiquitinase CYLD, a negative IKK complex regulator. CYLD expression was found to be significantly suppressed in primary T-ALL. Finally, we demonstrate that IKK inhibition is a promising option for the targeted therapy of T-ALL as specific suppression of IKK expression and function affected both the survival of human T-ALL cells and the maintenance of the disease in vivo.

Collaboration


Dive into the Iannis Aifantis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aristotelis Tsirigos

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Luisa Cimmino

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Omar Abdel-Wahab

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ross L. Levine

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge