Iciar P. López
University of Navarra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Iciar P. López.
Neuron | 2009
Adam C. Roberts; Javier Díez-García; Ramona M. Rodriguiz; Iciar P. López; Rafael Luján; Rebeca Martínez-Turrillas; Esther Picó; Maile A. Henson; Danilo R. Bernardo; Thomas M. Jarrett; Dallis J. Clendeninn; Laura López-Mascaraque; Guoping Feng; Donald C. Lo; John F. Wesseling; William C. Wetsel; Benjamin D. Philpot; Isabel Pérez-Otaño
NR3A is the only NMDA receptor (NMDAR) subunit that downregulates sharply prior to the onset of sensitive periods for plasticity, yet the functional importance of this transient expression remains unknown. To investigate whether removal/replacement of juvenile NR3A-containing NMDARs is involved in experience-driven synapse maturation, we used a reversible transgenic system that prolonged NR3A expression in the forebrain. We found that removal of NR3A is required to develop strong NMDAR currents, full expression of long-term synaptic plasticity, a mature synaptic organization characterized by more synapses and larger postsynaptic densities, and the ability to form long-term memories. Deficits associated with prolonged NR3A were reversible, as late-onset suppression of transgene expression rescued both synaptic and memory impairments. Our results suggest that NR3A behaves as a molecular brake to prevent the premature strengthening and stabilization of excitatory synapses and that NR3A removal might thereby initiate critical stages of synapse maturation during early postnatal neural development.
Neurobiology of Disease | 2009
Pascal Salin; Iciar P. López; Philippe Kachidian; Pedro Barroso-Chinea; Alberto J. Rico; Virginia Gómez-Bautista; Patrice Coulon; Lydia Kerkerian-Le Goff; José L. Lanciego
Striatal interneurons play key roles in basal ganglia function and related disorders by modulating the activity of striatal projection neurons. Here we have injected rabies virus (RV) into either the rat substantia nigra pars reticulata or the globus pallidus and took advantage of the trans-synaptic spread of RV to unequivocally identify the interneurons connected to striatonigral- or striatopallidal-projecting neurons, respectively. Large numbers of RV-infected parvalbumin (PV+/RV+) and cholinergic (ChAT+/RV+) interneurons were detected in control conditions, and they showed marked changes following intranigral 6-hydroxydopamine injection. The number of ChAT+/RV+ interneurons innervating striatopallidal neurons increased concomitant with a reduction in the number of PV+/RV+ interneurons, while the two interneuron populations connected to striatonigral neurons were clearly reduced. These data provide the first evidence of synaptic reorganization between striatal interneurons and projection neurons, notably a switch of cholinergic innervation onto striatopallidal neurons, which could contribute to imbalanced striatal outflow in parkinsonian state.
Molecular and Cellular Biochemistry | 2005
Iciar P. López; Fermín I. Milagro; Amelia Marti; María J. Moreno-Aliaga; J. A. Martínez; C. De Miguel
The expression of 76 sequences, previously isolated as differentially expressed in visceral white adipose tissue (WAT) of female rats, fed with a high-fat diet for 11 days (Lopez et al., Biochem Biophys Res Comm 318: 234–239, 2004), was analyzed in epidydimal WAT of male rats after a feeding period of 65 days with the same diet, using microarray technology. After Northern blot validation of the results, only three genes appeared upregulated (caveolin-2, the α-1 chain of haemoglobin and rat mammary tumor-7) and two downregulated (adiponectin and dystroglycan). We have also analyzed caveolin-1 gene expression and found that follows the opposite pattern of caveolin-2, indicating that they are inversely regulated. Our results suggest that if feeding with a high-fat diet is prolonged, many of the initial changes in gene expression, probably aimed to consume the energy surplus and prevent excessive fat deposition, are not maintained, and adaptation to an increased lipid storage is developed.
Neurobiology of Disease | 2008
Pedro Barroso-Chinea; Alberto J. Rico; Mónica Pérez-Manso; Elvira Roda; Iciar P. López; Diego Luis-Ravelo; José L. Lanciego
GABAergic projections emitted from the entopeduncular nucleus (ENT) and the substantia nigra pars reticulata (SNr) innervate different thalamic nuclei and they are known to be hyperactive after dopaminergic depletion. Here we show that isoform 2 of the vesicular glutamate transporter (VGLUT2) is expressed by neurons in the ENT nucleus but not in the SNr. Indeed, dual in situ hybridization demonstrated that the ENT nucleus contains two different subpopulations of projection neurons, one single-expressing GAD65/67 mRNAs and another one that co-expresses either of the GAD isoforms together with VGLUT2 mRNA. Unilateral dopaminergic depletion induced marked changes in pallidothalamic-projecting neuron gene expression, resulting in increased expression of GAD65/67 mRNAs together with a clear down-regulation of VGLUT2 mRNA expression. Our results indicate that the increased thalamic inhibition typical of dopamine depletion might be explained by a synergistic effect of increased GABA outflow coupled to decreased glutamate levels, both neurotransmitters coming from ENT neurons.
PLOS ONE | 2013
Rosete S. Pais; Nuria Moreno-Barriuso; Isabel Hernández-Porras; Iciar P. López; Javier De Las Rivas; José García Pichel
Background Insulin-like Growth Factor 1 (IGF1) is a multifunctional regulator of somatic growth and development throughout evolution. IGF1 signaling through IGF type 1 receptor (IGF1R) controls cell proliferation, survival and differentiation in multiple cell types. IGF1 deficiency in mice disrupts lung morphogenesis, causing altered prenatal pulmonary alveologenesis. Nevertheless, little is known about the cellular and molecular basis of IGF1 activity during lung development. Methods/Principal Findings Prenatal Igf1−/− mutant mice with a C57Bl/6J genetic background displayed severe disproportional lung hypoplasia, leading to lethal neonatal respiratory distress. Immuno-histological analysis of their lungs showed a thickened mesenchyme, alterations in extracellular matrix deposition, thinner smooth muscles and dilated blood vessels, which indicated immature and delayed distal pulmonary organogenesis. Transcriptomic analysis of Igf1−/− E18.5 lungs using RNA microarrays identified deregulated genes related to vascularization, morphogenesis and cellular growth, and to MAP-kinase, Wnt and cell-adhesion pathways. Up-regulation of immunity-related genes was verified by an increase in inflammatory markers. Increased expression of Nfib and reduced expression of Klf2, Egr1 and Ctgf regulatory proteins as well as activation of ERK2 MAP-kinase were corroborated by Western blot. Among IGF-system genes only IGFBP2 revealed a reduction in mRNA expression in mutant lungs. Immuno-staining patterns for IGF1R and IGF2, similar in both genotypes, correlated to alterations found in specific cell compartments of Igf1−/− lungs. IGF1 addition to Igf1−/− embryonic lungs cultured ex vivo increased airway septa remodeling and distal epithelium maturation, processes accompanied by up-regulation of Nfib and Klf2 transcription factors and Cyr61 matricellular protein. Conclusions/Significance We demonstrated the functional tissue specific implication of IGF1 on fetal lung development in mice. Results revealed novel target genes and gene networks mediators of IGF1 action on pulmonary cellular proliferation, differentiation, adhesion and immunity, and on vascular and distal epithelium maturation during prenatal lung development.
Brain Research | 2008
Pascal Salin; María Castle; Philippe Kachidian; Pedro Barroso-Chinea; Iciar P. López; Alberto J. Rico; Lydia Kerkerian-Le Goff; Patrice Coulon; José L. Lanciego
Although currently available retrograde tracers are useful tools for identifying striatal projection neurons, transported tracers often remained restricted within the neuronal somata and the thickest, main dendrites. Indeed, thin dendrites located far away from the cell soma as well as post-synaptic elements such as dendritic spines cannot be labeled unless performing intracellular injections. In this regard, the subsequent use of anterograde tracers for the labeling of striatal afferents often failed to unequivocally elucidate whether a given afferent makes true contacts with striatal projections neurons. Here we show that such a technical constraint can now be circumvented by retrograde tracing using rabies virus (RV). Immunofluorescence detection with a monoclonal antibody directed against the viral phosphoprotein resulted in a consistent Golgi-like labeling of striatal projection neurons, allowing clear visualization of small-size elements such as thin dendrites as well as dendritic spines. The combination of this retrograde tracing together with dual anterograde tracing of cortical and thalamic afferents has proven to be a useful tool for ascertaining striatal microcircuits. Indeed, by taking advantage of the trans-synaptic spread of RV, different subpopulations of local-circuit neurons modulating striatal efferent neurons can also be identified. At the striatal level, structures displaying labeling were visualized under the confocal laser-scanning microscope at high resolution. Once acquired, confocal stacks of images were firstly deconvoluted and then processed through 3D-volume rendering in order to unequivocally identify true contacts between pre-synaptic elements (axon terminals from cortical or thalamic sources) and post-synaptic elements (projection neurons and/or interneurons labeled with RV).
Journal of Neuroscience Methods | 2010
Lorena Conte-Perales; Pedro Barroso-Chinea; Alberto J. Rico; Virginia Gómez-Bautista; Iciar P. López; Elvira Roda; Floris G. Wouterlood; José L. Lanciego
Most of our current understanding of brain circuits is based on hodological studies carried out using neuroanatomical tract-tracing. Our aim is to advance one step further by visualizing the functional correlate in a given circuit. In this regard, we believe it is feasible to combine retrograde tracing with fluorescence, non-radioactive in situ hybridization (ISH) protocols. The subsequent detection at the single-cell level of the expression of a given mRNA within retrograde-labeled neurons provides information regarding cellular function. This may be of particular interest when trying to elucidate the performance of brain circuits of interest in animal models of brain diseases. Several combinations of retrograde tracing with either single- and double-ISH are presented here, together with some criteria that influence the selection of the tracer to be used in conjunction with the strong demands of the ISH.
PLOS ONE | 2014
Beatriz Moreno; Iciar P. López; Begoña Fernandez‐Diez; Miroslav Gottlieb; Carlos Matute; María Victoria Sánchez-Gómez; María Domercq; Albert Giralt; Jordi Alberch; Kevin W. Collon; Helen Zhang; Jack M. Parent; Meritxell Teixidó; Ernest Giralt; Valentín Ceña; Inmaculada Posadas; Eva Martínez-Pinilla; Pablo Villoslada; Rafael Franco
Background 5′-deoxy-5′-methylthioadenosine (MTA) is an endogenous compound produced through the metabolism of polyamines. The therapeutic potential of MTA has been assayed mainly in liver diseases and, more recently, in animal models of multiple sclerosis. The aim of this study was to determine the neuroprotective effect of this molecule in vitro and to assess whether MTA can cross the blood brain barrier (BBB) in order to also analyze its potential neuroprotective efficacy in vivo. Methods Neuroprotection was assessed in vitro using models of excitotoxicity in primary neurons, mixed astrocyte-neuron and primary oligodendrocyte cultures. The capacity of MTA to cross the BBB was measured in an artificial membrane assay and using an in vitro cell model. Finally, in vivo tests were performed in models of hypoxic brain damage, Parkinsons disease and epilepsy. Results MTA displays a wide array of neuroprotective activities against different insults in vitro. While the data from the two complementary approaches adopted indicate that MTA is likely to cross the BBB, the in vivo data showed that MTA may provide therapeutic benefits in specific circumstances. Whereas MTA reduced the neuronal cell death in pilocarpine-induced status epilepticus and the size of the lesion in global but not focal ischemic brain damage, it was ineffective in preserving dopaminergic neurons of the substantia nigra in the 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-mice model. However, in this model of Parkinsons disease the combined administration of MTA and an A2A adenosine receptor antagonist did produce significant neuroprotection in this brain region. Conclusion MTA may potentially offer therapeutic neuroprotection.
PLOS ONE | 2016
Iciar P. López; Sergio Piñeiro-Hermida; Rosete S. Pais; Raquel Torrens; Andreas Hoeflich; José G. Pichel
Regeneration of lung epithelium is vital for maintaining airway function and integrity. An imbalance between epithelial damage and repair is at the basis of numerous chronic lung diseases such as asthma, COPD, pulmonary fibrosis and lung cancer. IGF (Insulin-like Growth Factors) signaling has been associated with most of these respiratory pathologies, although their mechanisms of action in this tissue remain poorly understood. Expression profiles analyses of IGF system genes performed in mouse lung support their functional implication in pulmonary ontogeny. Immuno-localization revealed high expression levels of Igf1r (Insulin-like Growth Factor 1 Receptor) in lung epithelial cells, alveolar macrophages and smooth muscle. To further understand the role of Igf1r in pulmonary homeostasis, two distinct lung epithelial-specific Igf1r mutant mice were generated and studied. The lack of Igf1r disturbed airway epithelial differentiation in adult mice, and revealed enhanced proliferation and altered morphology in distal airway club cells. During recovery after naphthalene-induced club cell injury, the kinetics of terminal bronchiolar epithelium regeneration was hindered in Igf1r mutants, revealing increased proliferation and delayed differentiation of club and ciliated cells. Amid airway restoration, lungs of Igf1r deficient mice showed increased levels of Igf1, Insr, Igfbp3 and epithelial precursor markers, reduced amounts of Scgb1a1 protein, and alterations in IGF signaling mediators. These results support the role of Igf1r in controlling the kinetics of cell proliferation and differentiation during pulmonary airway epithelial regeneration after injury.
Journal of Neuroscience Methods | 2010
Iciar P. López; Pascal Salin; Philippe Kachidian; Pedro Barroso-Chinea; Alberto J. Rico; Virginia Gómez-Bautista; Lorena Conte-Perales; Patrice Coulon; Lydia Kerkerian-Le Goff; José L. Lanciego
Rabies virus (RV) has widely been used as a trans-synaptic retrograde tracer to analyze chains of connected neurons. The use of antibodies directed against the viral nucleoprotein enables viral nucleocapsids to be visualized within the cell soma, as well as within the thickest main dendrites. However, through this approach it is often difficult to accurately define post-synaptic elements (thin dendrites and/or dendritic spines). This limitation can now easily been circumvented by taking advantage of antibodies directed against a soluble viral phosphoprotein that spreads throughout the cytoplasm of the infected neuron, thereby producing Golgi-like immunofluorescent labeling of first-order projection neurons that are infected with RV. Furthermore, when combined with anterograde tracers such as Phaseolus vulgaris-leucoagglutinin (PHA-L) and biotinylated dextran amine (BDA), this procedure to detect RV facilitates the accurate visualization of both the pre- and post-synaptic elements. Finally, this method of viral detection is sufficiently sensitive to detect weakly labeled second-order neurons, which can then be further characterized neurochemically. Several examples are provided to illustrate why retrograde trans-synaptic tracing using RV can be regarded as an important breakthrough in the analysis of brain circuits, providing an unprecedented level of resolution.