Ignacio López-Goñi
University of Navarra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ignacio López-Goñi.
Molecular Microbiology | 1998
Alberto Sola-Landa; Javier Pizarro-Cerdá; María-Jesús Grilló; Edgardo Moreno; Ignacio Moriyón; J. M. Blasco; Jean-Pierre Gorvel; Ignacio López-Goñi
Two mutants showing increased sensitivity to polycations and surfactants were obtained by transposon mutagenesis of virulent Brucella abortus 2308 Nalr. These mutants showed no obvious in vitro growth defects and produced smooth‐type lipopolysaccharides. However, they hardly multiplied or persisted in mouse spleens, displayed reduced invasiveness in macrophages and HeLa cells, lost the ability to inhibit lysosome fusion and were unable to replicate intracellularly. Subsequent DNA analyses identified a two‐component regulatory system [Brucella virulence related (Bvr)] with a regulatory (BvrR) and sensory (BvrS) protein. Cloning of bvrR in the BvrR‐deficient mutant restored the resistance to polycations and, in part, the invasiveness and the ability to multiply intracellularly. BvrR and BvrS were highly similar (87–89% and 70–80% respectively) to the regulatory and sensory proteins of the chromosomally encoded Rhizobium meliloti ChvI–ExoS and Agrobacterium tumefaciens ChvI–ChvG systems previously shown to be critical for endosymbiosis and pathogenicity in plants. Divergence among the three sensory proteins was located mostly within a periplasmic domain probably involved in stimulus sensing. As B. abortus, R. meliloti and A. tumefaciens are phylogenetically related, these observations suggest that these systems have a common ancestor that has evolved to sense stimuli in plant and animal microbial environments.
International Journal of Systematic and Evolutionary Microbiology | 1998
Julián Velasco; Conchi Romero; Ignacio López-Goñi; José Leiva; Ramón Díaz; Ignacio Moriyón
The relatedness of Brucella spp. and Ochrobactrum anthropi was studied by protein profiling, Western blot, immunoelectrophoresis and 16S rRNA analysis. Whole-cell and soluble proteins of brucellae and O. anthropi showed serological cross-reactivities quantitatively and qualitatively more intense than those existing with similar extracts of Agrobacterium spp. Numerical analysis of Western blot profiles of whole-cell extracts showed that O. anthropi LMG 3301 was closer to Brucella spp. than to O. anthropi LMG 3331T, a result not obtained by protein profiling. These differences were not observed by Western blot with soluble fractions, and immunoelectrophoretic analyses suggested that this was due to destruction of conformational epitopes in Western blot procedures with the subsequent simplification of antigenic profile. Analysis of the 16S rRNA sequences of strains previously used in the species definition confirmed that strain LMG 3301, and also LMG 3306, were closer to the brucellae, and that LMG 3331T was in a separate cluster. The LMG 3301 and the LMG 3331T clusters could also be separated by their different colistin sensitivity and by PCR with 16S rRNA Brucella primers, and both methods showed strains of both clusters among clinical isolates classified as O. anthropi by conventional tests. These results and those of previous DNA-DNA hybridization studies [Holmes, B., Popoff, M., Kiredjian, M. & Kersters, K. (1988). Int J Syst Bacteriol 38, 406-416] show that the LMG 3301 cluster and related clinical isolates should be given a new species status for which the name Ochrobactrum intermedium sp. nov. is proposed (type strain is LMG 3301T=NCTC 12171T = CNS 2-75T).
Proceedings of the National Academy of Sciences of the United States of America | 2002
Caterina Guzmán-Verri; Lorea Manterola; Alberto Sola-Landa; A. Parra; Axel Cloeckaert; J. Garin; Jean Pierre Gorvel; Ignacio Moriyón; Edgardo Moreno; Ignacio López-Goñi
The Brucella BvrR/BvrS two-component regulatory system is homologous to the ChvI/ChvG systems of Sinorhizobium meliloti and Agrobacterium tumefaciens necessary for endosymbiosis and pathogenicity in plants. BvrR/BvrS controls cell invasion and intracellular survival. Probing the surface of bvrR and bvrS transposon mutants with monoclonal antibodies showed all described major outer membrane proteins (Omps) but Omp25, a protein known to be involved in Brucella virulence. Absence of Omp25 expression was confirmed by two-dimensional electrophoresis of envelope fractions and by gene reporter studies. The electrophoretic analysis also revealed reduction or absence in the mutants of a second set of protein spots that by matrix-assisted laser desorption ionization MS and peptide mass mapping were identified as a non-previously described Omp (Omp3b). Because bvrR and bvrS mutants are also altered in cell-surface hydrophobicity, permeability, and sensitivity to surface-targeted bactericidal peptides, it is proposed that BvrR/BvrS controls cell envelope changes necessary to transit between extracellular and intracellular environments. A genomic search revealed that Omp25 (Omp3a) and Omp3b belong to a family of Omps of plant and animal cell-associated α-Proteobacteria, which includes Rhizobium leguminosarum RopB and A. tumefaciens AopB. Previous work has shown that RopB is not expressed in bacteroids, that AopB is involved in tumorigenesis, and that dysfunction of A. tumefaciens ChvI/ChvG alters surface properties. It is thus proposed that the BvrR/BvrS and Omp3 homologues of the cell-associated α-Proteobacteria play a role in bacterial surface control and host cell interactions.
Journal of Clinical Microbiology | 2008
Ignacio López-Goñi; David García-Yoldi; C. M. Marín; M. J. De Miguel; P. M. Muñoz; J. M. Blasco; Isabelle Jacques; Maggy Grayon; Axel Cloeckaert; Ana C. Ferreira; Regina Cardoso; M. I. Corrêa de Sá; Karl Walravens; David Albert; Bruno Garin-Bastuji
ABSTRACT An evaluation of a multiplex PCR assay (Bruce-ladder) was performed in seven laboratories using 625 Brucella strains from different animal and geographical origins. This robust test can differentiate in a single step all of the classical Brucella species, including those found in marine mammals and the S19, RB51, and Rev.1 vaccine strains.
PLOS ONE | 2008
David González; María-Jesús Grilló; María-Jesús de Miguel; Tara Ali; Vilma Arce-Gorvel; Rose-May Delrue; Raquel Conde-Álvarez; Pilar Muñoz; Ignacio López-Goñi; Maite Iriarte; Clara-M. Marín; Andrej Weintraub; Göran Widmalm; Michel S. Zygmunt; Jean-Jacques Letesson; Jean-Pierre Gorvel; J. M. Blasco; Ignacio Moriyón
Background The brucellae are facultative intracellular bacteria that cause brucellosis, one of the major neglected zoonoses. In endemic areas, vaccination is the only effective way to control this disease. Brucella melitensis Rev 1 is a vaccine effective against the brucellosis of sheep and goat caused by B. melitensis, the commonest source of human infection. However, Rev 1 carries a smooth lipopolysaccharide with an O-polysaccharide that elicits antibodies interfering in serodiagnosis, a major problem in eradication campaigns. Because of this, rough Brucella mutants lacking the O-polysaccharide have been proposed as vaccines. Methodology/Principal Findings To examine the possibilities of rough vaccines, we screened B. melitensis for lipopolysaccharide genes and obtained mutants representing all main rough phenotypes with regard to core oligosaccharide and O-polysaccharide synthesis and export. Using the mouse model, mutants were classified into four attenuation patterns according to their multiplication and persistence in spleens at different doses. In macrophages, mutants belonging to three of these attenuation patterns reached the Brucella characteristic intracellular niche and multiplied intracellularly, suggesting that they could be suitable vaccine candidates. Virulence patterns, intracellular behavior and lipopolysaccharide defects roughly correlated with the degree of protection afforded by the mutants upon intraperitoneal vaccination of mice. However, when vaccination was applied by the subcutaneous route, only two mutants matched the protection obtained with Rev 1 albeit at doses one thousand fold higher than this reference vaccine. These mutants, which were blocked in O-polysaccharide export and accumulated internal O-polysaccharides, stimulated weak anti-smooth lipopolysaccharide antibodies. Conclusions/Significance The results demonstrate that no rough mutant is equal to Rev 1 in laboratory models and question the notion that rough vaccines are suitable for the control of brucellosis in endemic areas.
Infection and Immunity | 2003
Daniel Monreal; María-Jesús Grilló; David González; C. M. Marín; M. J. De Miguel; Ignacio López-Goñi; J. M. Blasco; Axel Cloeckaert; Ignacio Moriyón
ABSTRACT Brucella abortus rough lipopolysaccharide (LPS) mutants were obtained by transposon insertion into two wbk genes (wbkA [putative glycosyltransferase; formerly rfbU] and per [perosamine synthetase]), into manB (pmm [phosphomannomutase; formerly rfbK]), and into an unassigned gene. Consistent with gene-predicted roles, electrophoretic analysis, 2-keto-3-manno-d-octulosonate measurements, and immunoblots with monoclonal antibodies to O-polysaccharide, outer and inner core epitopes showed no O-polysaccharide expression and no LPS core defects in the wbk mutants. The rough LPS of manB mutant lacked the outer core epitope and the gene was designated manBcore to distinguish it from the wbk manBO-Ag. The fourth gene (provisionally designated wa**) coded for a putative glycosyltransferase involved in inner core synthesis, but the mutant kept the outer core epitope. Differences in phage and polymyxin sensitivity, exposure or expression of outer membrane protein, core and lipid A epitopes, and lipid A acylation demonstrated that small changes in LPS core caused significant differences in B. abortus outer membrane topology. In mice, the mutants showed different degrees of attenuation and induced antibodies to rough LPS and outer membrane proteins. Core-defective mutants and strain RB51 were ineffective vaccines against B. abortus in mice. The mutants per and wbkA induced protection but less than the standard smooth vaccine S19, and controls suggested that anti O-polysaccharide antibodies accounted largely for the difference. Whereas no core-defective mutant was effective against B. ovis, S19, RB51, and the wbkA and per mutants afforded similar levels of protection. These results suggest that rough Brucella vaccines should carry a complete core for maximal effectiveness.
Journal of Bacteriology | 2005
Lorea Manterola; Ignacio Moriyón; Edgardo Moreno; Alberto Sola-Landa; David S. Weiss; Michel H. J. Koch; Jörg Howe; Klaus Brandenburg; Ignacio López-Goñi
The two-component BvrS/BvrR system is essential for Brucella abortus virulence. It was shown previously that its dysfunction abrogates expression of some major outer membrane proteins and increases bactericidal peptide sensitivity. Here, we report that BvrS/BvrR mutants have increased surface hydrophobicity and susceptibility to killing by nonimmune serum. The bvrS and bvrR mutant lipopolysaccharides (LPSs) bound more polymyxin B, chimeras constructed with bvrS mutant cells and parental LPS showed augmented polymyxin B resistance, and, conversely, parental cells and bvrS mutant LPS chimeras were more sensitive and displayed polymyxin B-characteristic outer membrane lesions, implicating LPS as being responsible for the phenotype of the BvrS/BvrR mutants. No qualitative or quantitative changes were detected in other envelope and outer membrane components examined: periplasmic beta(1-2) glucans, native hapten polysaccharide, and phospholipids. The LPS of the mutants was similar to parental LPS in O-polysaccharide polymerization and fine structure but showed both increased underacylated lipid A species and higher acyl-chain fluidity that correlated with polymyxin B binding. These lipid A changes did not alter LPS cytokine induction, showing that in contrast to other gram-negative pathogens, recognition by innate immune receptors is not decreased by these changes in LPS structure. Transcription of Brucella genes required for incorporating long acyl chains into lipid A (acpXL and lpxXL) or implicated in lipid A acylation control (bacA) was not affected. We propose that in Brucella the outer membrane homeostasis depends on the functioning of BvrS/BvrR. Accordingly, disruption of BvrS/BvrR damages the outer membrane, thus contributing to the severe attenuation manifested by bvrS and bvrR mutants.
Veterinary Microbiology | 2011
Ignacio López-Goñi; David García-Yoldi; Clara M. Marín; María J. de Miguel; Elías Barquero-Calvo; Caterina Guzmán-Verri; David Albert; Bruno Garin-Bastuji
Rapid and specific identification of Brucella suis at the biovar level is necessary because some of the biovars that infect animals are pathogenic for humans. None of the molecular typing methods described so far are able to discriminate B. suis biovars in a single test and differentiation of B. suis from Brucella canis by molecular approaches can be difficult. This article describes a new multiplex PCR assay, Suis-ladder, for fast and accurate identification of B. suis at the biovar level and the differentiation of B. suis, B. canis and Brucella microti. An advancement of the original Bruce-ladder PCR protocol which allows the correct discrimination of all known Brucella species is also described.
Veterinary Microbiology | 2002
Ignacio López-Goñi; Caterina Guzmán-Verri; Lorea Manterola; Alberto Sola-Landa; Ignacio Moriyón; Edgardo Moreno
The Brucella BvrR/BvrS two-component regulatory system is highly similar to the regulatory and sensory proteins of Sinorhizobium and Agrobacterium necessary for endosymbiosis and pathogenicity in plants, and very similar to a putative system present in the animal pathogen Bartonella. Mutations in the bvrR or bvrS genes hamper the penetration of B. abortus in non-phagocytic cells and impairs intracellular trafficking and virulence. In contrast to virulent Brucella, BvrR/BvrS mutants do not recruit small GTPases of the Rho subfamily required for actin polymerization and penetration to cells. Dysfunction of the BvrR/BvrS system alters the outer membrane permeability, the expression of several group 3 outer membrane proteins and the pattern of lipid A acylation. Constructs of virulent B. abortus chimeras containing heterologous LPS from the bvrS(-) mutant demonstrated an altered permeability to cationic peptides similar to that of the BvrR/BvrS mutants. We hypothesize that the Brucella BvrR/BvrS is a system devoted to the homeostasis of the outer membrane and, therefore in the interface for cell invasion and mounting the required structures for intracellular parasitism.
Journal of Clinical Microbiology | 2007
David García-Yoldi; Philippe Le Flèche; María J. de Miguel; Pilar Muñoz; José M. Blasco; Zeljko Cvetnic; Clara M. Marín; Gilles Vergnaud; Ignacio López-Goñi
ABSTRACT Multiple-locus variable-number tandem-repeat analysis (MLVA), multiplex PCR, and PCR-restriction fragment length polymorphism analysis were compared for typing Brucella suis isolates. A perfect concordance was obtained among these molecular assays. However, MLVA was the only method to demonstrate brucellosis outbreaks and to confirm that wildlife is a reservoir for zoonotic brucellosis.