Ignacio Moriyón
University of Navarra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ignacio Moriyón.
Molecular Microbiology | 1998
Alberto Sola-Landa; Javier Pizarro-Cerdá; María-Jesús Grilló; Edgardo Moreno; Ignacio Moriyón; J. M. Blasco; Jean-Pierre Gorvel; Ignacio López-Goñi
Two mutants showing increased sensitivity to polycations and surfactants were obtained by transposon mutagenesis of virulent Brucella abortus 2308 Nalr. These mutants showed no obvious in vitro growth defects and produced smooth‐type lipopolysaccharides. However, they hardly multiplied or persisted in mouse spleens, displayed reduced invasiveness in macrophages and HeLa cells, lost the ability to inhibit lysosome fusion and were unable to replicate intracellularly. Subsequent DNA analyses identified a two‐component regulatory system [Brucella virulence related (Bvr)] with a regulatory (BvrR) and sensory (BvrS) protein. Cloning of bvrR in the BvrR‐deficient mutant restored the resistance to polycations and, in part, the invasiveness and the ability to multiply intracellularly. BvrR and BvrS were highly similar (87–89% and 70–80% respectively) to the regulatory and sensory proteins of the chromosomally encoded Rhizobium meliloti ChvI–ExoS and Agrobacterium tumefaciens ChvI–ChvG systems previously shown to be critical for endosymbiosis and pathogenicity in plants. Divergence among the three sensory proteins was located mostly within a periplasmic domain probably involved in stimulus sensing. As B. abortus, R. meliloti and A. tumefaciens are phylogenetically related, these observations suggest that these systems have a common ancestor that has evolved to sense stimuli in plant and animal microbial environments.
Nature Immunology | 2005
Beatriz Arellano-Reynoso; Nicolas Lapaque; Susana Salcedo; Gabriel Briones; Andrés E. Ciocchini; Rodolfo A. Ugalde; Edgardo Moreno; Ignacio Moriyón; Jean-Pierre Gorvel
Pathogenic brucella bacteria have developed strategies to persist for prolonged periods of time in host cells, avoiding innate immune responses. Here we show that the cyclic β-1,2-glucans (CβG) synthesized by brucella is important for circumventing host cell defenses. CβG acted in lipid rafts found on host cell membranes. CβG-deficient mutants failed to prevent phagosome-lysosome fusion and could not replicate. However, when treated with purified CβG or synthetic methyl-β-cyclodextrin, the mutants were able to control vacuole maturation by avoiding lysosome fusion, and this allowed intracellular brucella to survive and reach the endoplasmic reticulum. Fusion between the endoplasmic reticulum and the brucella-containing vacuole depended on the brucella virulence type IV secretion system but not on CβG. Brucella CβG is thus a virulence factor that interacts with lipid rafts and contributes to pathogen survival.
PLOS ONE | 2007
Elías Barquero-Calvo; Esteban Chaves-Olarte; David S. Weiss; Caterina Guzmán-Verri; Carlos Chacón-Díaz; Alexandra Rucavado; Ignacio Moriyón; Edgardo Moreno
Background To unravel the strategy by which Brucella abortus establishes chronic infections, we explored its early interaction with innate immunity. Methodology/Principal Findings Brucella did not induce proinflammatory responses as demonstrated by the absence of leukocyte recruitment, humoral or cellular blood changes in mice. Brucella hampered neutrophil (PMN) function and PMN depletion did not influence the course of infection. Brucella barely induced proinflammatory cytokines and consumed complement, and was strongly resistant to bactericidal peptides, PMN extracts and serum. Brucella LPS (BrLPS), NH-polysaccharides, cyclic glucans, outer membrane fragments or disrupted bacterial cells displayed low biological activity in mice and cells. The lack of proinflammatory responses was not due to conspicuous inhibitory mechanisms mediated by the invading Brucella or its products. When activated 24 h post-infection macrophages did not kill Brucella, indicating that the replication niche was not fusiogenic with lysosomes. Brucella intracellular replication did not interrupt the cell cycle or caused cytotoxicity in WT, TLR4 and TLR2 knockout cells. TNF-α-induction was TLR4- and TLR2-dependent for live but not for killed B. abortus. However, intracellular replication in TLR4, TLR2 and TLR4/2 knockout cells was not altered and the infection course and anti-Brucella immunity development upon BrLPS injection was unaffected in TLR4 mutant mice. Conclusion/Significance We propose that Brucella has developed a stealth strategy through PAMPs reduction, modification and hiding, ensuring by this manner low stimulatory activity and toxicity for cells. This strategy allows Brucella to reach its replication niche before activation of antimicrobial mechanisms by adaptive immunity. This model is consistent with clinical profiles observed in humans and natural hosts at the onset of infection and could be valid for those intracellular pathogens phylogenetically related to Brucella that also cause long lasting infections.
Veterinary Microbiology | 2002
Edgardo Moreno; Axel Cloeckaert; Ignacio Moriyón
The genus Brucella contains alpha-Proteobacteria adapted to intracellular life within cells of a variety of mammals. Controversy has arisen concerning Brucella internal taxonomy, and it has been proposed that the DNA-DNA hybridization-based genomospecies concept be applied to the genus. According to this view, only one species, Brucella melitensis, should be recognized, and the classical species should be considered as biovars (B. melitensis biovar melitensis; B. melitensis biovar abortus; etc.). However, a critical reappraisal of the species concept, a review of the population structure of bacteria and the analysis of Brucella genetic diversity by methods other than DNA-DNA hybridization show that there are no scientific grounds to apply the genomospecies concept to this genus. On the other hand, an enlarged biological species concept allows the definition of Brucella species that are consistent with molecular analyses and support the taxonomical standing of most classical species. Both the host range as a long-recognized biological criterion and the presence of species-specific markers in outer membrane protein genes and in other genes show that B. melitensis, B. abortus, B. ovis, B. canis and B. neotomae are not mere pathovars (or nomenspecies) but biologically meaningful species. The status of B. suis is, however, less clear. These approaches should be useful to define species for the marine mammal Brucella isolates, as illustrated by the grouping of the isolates from pinnipeds or from cetaceans by omp2 gene analysis. It is shown that a correct Brucella species definition is important to understand the evolution of the genus.
International Journal of Systematic and Evolutionary Microbiology | 1998
Julián Velasco; Conchi Romero; Ignacio López-Goñi; José Leiva; Ramón Díaz; Ignacio Moriyón
The relatedness of Brucella spp. and Ochrobactrum anthropi was studied by protein profiling, Western blot, immunoelectrophoresis and 16S rRNA analysis. Whole-cell and soluble proteins of brucellae and O. anthropi showed serological cross-reactivities quantitatively and qualitatively more intense than those existing with similar extracts of Agrobacterium spp. Numerical analysis of Western blot profiles of whole-cell extracts showed that O. anthropi LMG 3301 was closer to Brucella spp. than to O. anthropi LMG 3331T, a result not obtained by protein profiling. These differences were not observed by Western blot with soluble fractions, and immunoelectrophoretic analyses suggested that this was due to destruction of conformational epitopes in Western blot procedures with the subsequent simplification of antigenic profile. Analysis of the 16S rRNA sequences of strains previously used in the species definition confirmed that strain LMG 3301, and also LMG 3306, were closer to the brucellae, and that LMG 3331T was in a separate cluster. The LMG 3301 and the LMG 3331T clusters could also be separated by their different colistin sensitivity and by PCR with 16S rRNA Brucella primers, and both methods showed strains of both clusters among clinical isolates classified as O. anthropi by conventional tests. These results and those of previous DNA-DNA hybridization studies [Holmes, B., Popoff, M., Kiredjian, M. & Kersters, K. (1988). Int J Syst Bacteriol 38, 406-416] show that the LMG 3301 cluster and related clinical isolates should be given a new species status for which the name Ochrobactrum intermedium sp. nov. is proposed (type strain is LMG 3301T=NCTC 12171T = CNS 2-75T).
Proceedings of the National Academy of Sciences of the United States of America | 2002
Edgardo Moreno; Ignacio Moriyón
On September 23, 1905, a cargo carrying 60 goats from Malta arrived in New York. The herd was kept in quarantine because of several deaths that occurred during the journey. Crewmen, an agent from the U.S. Bureau of Animal Industry, which was responsible for the shipment, and a woman who drank milk that “escaped” from the quarantine station displayed the characteristic symptoms of “Mediterranean fever.” Lieutenant Colonel David Bruce, a physician of the Royal Army, who discovered “Micrococcus melitensis ” in 1887 in infected British soldiers residing in Malta, had forewarned the U.S. sanitary authorities about the risk of “Mediterranean fever” by importing goats from Malta. In November 1906, after isolation of “M. melitensis,” the goats were destroyed. Almost 100 years after this episode, the genome sequence of Brucella melitensis (renamed after David Bruce) has been resolved by DelVecchio et al. (1), bringing new light to the understanding of the biology of this pathogen. The disease, known as brucellosis, is found in all continents, affecting mainly low-income countries; in addition, it constitutes a contemporary concern because Brucella strains are potential agents of biological warfare.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Caterina Guzmán-Verri; Lorea Manterola; Alberto Sola-Landa; A. Parra; Axel Cloeckaert; J. Garin; Jean Pierre Gorvel; Ignacio Moriyón; Edgardo Moreno; Ignacio López-Goñi
The Brucella BvrR/BvrS two-component regulatory system is homologous to the ChvI/ChvG systems of Sinorhizobium meliloti and Agrobacterium tumefaciens necessary for endosymbiosis and pathogenicity in plants. BvrR/BvrS controls cell invasion and intracellular survival. Probing the surface of bvrR and bvrS transposon mutants with monoclonal antibodies showed all described major outer membrane proteins (Omps) but Omp25, a protein known to be involved in Brucella virulence. Absence of Omp25 expression was confirmed by two-dimensional electrophoresis of envelope fractions and by gene reporter studies. The electrophoretic analysis also revealed reduction or absence in the mutants of a second set of protein spots that by matrix-assisted laser desorption ionization MS and peptide mass mapping were identified as a non-previously described Omp (Omp3b). Because bvrR and bvrS mutants are also altered in cell-surface hydrophobicity, permeability, and sensitivity to surface-targeted bactericidal peptides, it is proposed that BvrR/BvrS controls cell envelope changes necessary to transit between extracellular and intracellular environments. A genomic search revealed that Omp25 (Omp3a) and Omp3b belong to a family of Omps of plant and animal cell-associated α-Proteobacteria, which includes Rhizobium leguminosarum RopB and A. tumefaciens AopB. Previous work has shown that RopB is not expressed in bacteroids, that AopB is involved in tumorigenesis, and that dysfunction of A. tumefaciens ChvI/ChvG alters surface properties. It is thus proposed that the BvrR/BvrS and Omp3 homologues of the cell-associated α-Proteobacteria play a role in bacterial surface control and host cell interactions.
Molecular Microbiology | 1999
Mikael Skurnik; Reija Venho; José-Antonio Bengoechea; Ignacio Moriyón
Lipopolysaccharide (LPS) of Yersinia enterocolitica O:3 has an inner core linked to both the O‐antigen and to an outer core hexasaccharide that forms a branch. The biological role of the outer core was studied using polar and non‐polar mutants of the outer core biosynthetic operon. Analysis of O‐antigen‐ and outer core‐deficient strains suggested a critical role for the outer core in outer membrane properties relevant in resistance to antimicrobial peptides and permeability to hydrophobic agents, and indirectly relevant in resistance to killing by normal serum. Wild‐type bacteria but not outer core mutants killed intragastrically infected mice, and the intravenous lethal dose was ≈104‐fold higher for outer core mutants. After intragastric infection, outer core mutants colonized Peyers patches and invaded mesenteric lymph nodes, spleen and liver, and induced protective immunity against wild‐type bacteria. In mice co‐infected intragastrically with an outer core mutant–wild type mixture, both strains colonized Peyers patches similarly during the first 2 days, but the mutant was much less efficient in colonizing deeper organs and was cleared faster from Peyers patches. The results demonstrate that outer core is required for Y. enterocolitica O:3 full virulence, and strongly suggest that it provides resistance against defence mechanisms (most probably those involving bactericidal peptides).
Clinical and Vaccine Immunology | 2005
Pilar Muñoz; C. M. Marín; Daniel Monreal; David González; B. Garin-Bastuji; Ramón Díaz; R. C. Mainar-Jaime; Ignacio Moriyón; J. M. Blasco
ABSTRACT Yersinia enterocolitica O:9 bears a smooth lipopolysaccharide (S-LPS) of Brucella sp. O-chain A + C/Y epitopic structure and is a cause of false-positive serological reactions (FPSR) in standard tests for cattle brucellosis. Brucella S-LPS, cross-reacting S-LPSs representing several O-chain epitope combinations, Brucella core lipid A epitopes (rough LPS), Brucella abortus S-LPS-derived polysaccharide, native hapten polysaccharide, rough LPS group 3 outer membrane protein complexes, recombinant BP26, and cytosolic proteins were tested in enzyme-linked immunosorbent assays (ELISA) and precipitation tests to detect cattle brucellosis (sensitivity) and to differentiate it from FPSR (specificity). No single serological test and antigen combination showed 100% sensitivity and specificity simultaneously. Immunoprecipitation tests with native hapten polysaccharide, counterimmunoelectrophoresis with cytosolic proteins, and a chaotropic ELISA with Brucella S-LPS were 100% specific but less sensitive than the Rose Bengal test, complement fixation, and indirect ELISA with Brucella S-LPSs and native hapten or S-LPS-derived polysaccharides. A competitive ELISA with Brucella S-LPS and M84 C/Y-specific monoclonal antibody was not 100% specific and was less sensitive than other tests. ELISA with Brucella suis bv. 2 S-LPS (deficient in C epitopes), Escherichia hermannii S-LPSs [lacking the contiguous α-(1-2)-linked perosamine residues characteristic of Y. enterocolitica S-LPS], BP26 recombinant protein, and Brucella cytosolic fractions did not provide adequate sensitivity/specificity ratios. Although no serological test and antigen combination fully resolved the diagnosis of bovine brucellosis in the presence of FPSR, some are simple and practical alternatives to the brucellin skin test currently recommended for differential diagnosis.
PLOS ONE | 2008
David González; María-Jesús Grilló; María-Jesús de Miguel; Tara Ali; Vilma Arce-Gorvel; Rose-May Delrue; Raquel Conde-Álvarez; Pilar Muñoz; Ignacio López-Goñi; Maite Iriarte; Clara-M. Marín; Andrej Weintraub; Göran Widmalm; Michel S. Zygmunt; Jean-Jacques Letesson; Jean-Pierre Gorvel; J. M. Blasco; Ignacio Moriyón
Background The brucellae are facultative intracellular bacteria that cause brucellosis, one of the major neglected zoonoses. In endemic areas, vaccination is the only effective way to control this disease. Brucella melitensis Rev 1 is a vaccine effective against the brucellosis of sheep and goat caused by B. melitensis, the commonest source of human infection. However, Rev 1 carries a smooth lipopolysaccharide with an O-polysaccharide that elicits antibodies interfering in serodiagnosis, a major problem in eradication campaigns. Because of this, rough Brucella mutants lacking the O-polysaccharide have been proposed as vaccines. Methodology/Principal Findings To examine the possibilities of rough vaccines, we screened B. melitensis for lipopolysaccharide genes and obtained mutants representing all main rough phenotypes with regard to core oligosaccharide and O-polysaccharide synthesis and export. Using the mouse model, mutants were classified into four attenuation patterns according to their multiplication and persistence in spleens at different doses. In macrophages, mutants belonging to three of these attenuation patterns reached the Brucella characteristic intracellular niche and multiplied intracellularly, suggesting that they could be suitable vaccine candidates. Virulence patterns, intracellular behavior and lipopolysaccharide defects roughly correlated with the degree of protection afforded by the mutants upon intraperitoneal vaccination of mice. However, when vaccination was applied by the subcutaneous route, only two mutants matched the protection obtained with Rev 1 albeit at doses one thousand fold higher than this reference vaccine. These mutants, which were blocked in O-polysaccharide export and accumulated internal O-polysaccharides, stimulated weak anti-smooth lipopolysaccharide antibodies. Conclusions/Significance The results demonstrate that no rough mutant is equal to Rev 1 in laboratory models and question the notion that rough vaccines are suitable for the control of brucellosis in endemic areas.