Igor E. Mazets
Vienna University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Igor E. Mazets.
Science | 2015
Tim Langen; Sebastian Erne; Remi Geiger; Bernhard Rauer; Thomas Schweigler; Maximilian Kuhnert; Wolfgang Rohringer; Igor E. Mazets; Thomas Gasenzer; Jörg Schmiedmayer
Detecting multiple temperatures Most people have an intuitive understanding of temperature. In the context of statistical mechanics, the higher the temperature, the more a system is removed from its lowest energy state. Things become more complicated in a nonequilibrium system governed by quantum mechanics and constrained by several conserved quantities. Langen et al. showed that as many as 10 temperature-like parameters are necessary to describe the steady state of a one-dimensional gas of Rb atoms that was split into two in a particular way (see the Perspective by Spielman). Science, this issue p. 207; see also p. 185 Interferometry suggests that as many as 10 parameters are needed to describe the steady state of an integrable system. [Also see Perspective by Spielman] The description of the non-equilibrium dynamics of isolated quantum many-body systems within the framework of statistical mechanics is a fundamental open question. Conventional thermodynamical ensembles fail to describe the large class of systems that exhibit nontrivial conserved quantities, and generalized ensembles have been predicted to maximize entropy in these systems. We show experimentally that a degenerate one-dimensional Bose gas relaxes to a state that can be described by such a generalized ensemble. This is verified through a detailed study of correlation functions up to 10th order. The applicability of the generalized ensemble description for isolated quantum many-body systems points to a natural emergence of classical statistical properties from the microscopic unitary quantum evolution.
Physical Review A | 2009
David Petrosyan; Guy Bensky; Gershon Kurizki; Igor E. Mazets; Johannes Majer; Jörg Schmiedmayer
We examine the possibility of coherent, reversible information transfer between solid-state superconducting qubits and ensembles of ultra-cold atoms. Strong coupling between these systems is mediated by a microwave transmission line resonator that interacts near-resonantly with the atoms via their optically excited Rydberg states. The solid-state qubits can then be used to implement rapid quantum logic gates, while collective metastable states of the atoms can be employed for long-term storage and optical read-out of quantum information.
New Journal of Physics | 2013
D. Adu Smith; Michael Gring; Tim Langen; Maximilian Kuhnert; Bernhard Rauer; Remi Geiger; Takuya Kitagawa; Igor E. Mazets; Eugene Demler; Jörg Schmiedmayer
We detail the experimental observation of the non-equilibrium many-body phenomenon prethermalization. We study the dynamics of a rapidly and coherently split one-dimensional Bose gas. An analysis based on the use of full quantum mechanical probability distributions of matter wave interference contrast reveals that the system evolves towards a quasi-steady state. This state, which can be characterized by an effective temperature, is not the final thermal equilibrium state. We compare the evolution of the system to an integrable Tomonaga-Luttinger liquid model and show that the system dephases to a prethermalized state rather than undergoing thermalization towards a final thermal equilibrium state.
Physical Review Letters | 2008
Igor E. Mazets; Thorsten Schumm; Joerg Schmiedmayer
We demonstrate that virtual excitations of higher radial modes in an atomic Bose gas in a tightly confining waveguide result in effective three-body collisions that violate integrability in this quasi-one-dimensional quantum system and give rise to thermalization. The estimated thermalization rates are consistent with recent experimental results in quasi-1D dynamics of ultracold atoms.
New Journal of Physics | 2014
Remi Geiger; Tim Langen; Igor E. Mazets; Jörg Schmiedmayer
We describe the relaxation dynamics of a coherently split one-dimensional (1D) Bose gas in the harmonic approximation. A dephased, prethermalized state emerges in a light-cone-like evolution which is connected to the spreading of correlations with a characteristic velocity. In our description we put special emphasis on the influence of the longitudinal trapping potential and the finite size of the system, both of which are highly relevant in experiments. In particular, we quantify their influence on the phase correlation properties and the characteristic velocity with which the prethermalized state is established. Finally, we show that the trapping potential has an important effect on the recurrences of coherence which are expected to appear in a finite size system.
New Journal of Physics | 2010
Igor E. Mazets; Jörg Schmiedmayer
We study the collisional processes that can lead to thermalization in one-dimensional (1D) systems. For two-body collisions, excitations of transverse modes are the prerequisite for energy exchange and thermalization. At very low temperatures, excitations of transverse modes are exponentially suppressed, thermalization by two-body collisions stops and the system should become integrable. In quantum mechanics, virtual excitations of higher radial modes are possible. These virtually excited radial modes give rise to effective three-body velocity-changing collisions, which lead to thermalization. We show that these three-body elastic interactions are suppressed by pairwise quantum correlations when approaching the strongly correlated regime. If the relative momentum k is small compared with the two-body coupling constant c, the three-particle scattering state is suppressed by a factor of (k/c)12, which is proportional to γ−12, that is, to the square of the three-body correlation function at zero distance in the limit of the Lieb–Liniger parameter γ1. This demonstrates that in 1D quantum systems, it is not the freeze-out of two-body collisions but the strong quantum correlations that ensure absence of thermalization on experimentally relevant time scales.
New Journal of Physics | 2010
Julian Grond; Ulrich Hohenester; Igor E. Mazets; Jörg Schmiedmayer
Interferometry with ultracold atoms promises the possibility of ultraprecise and ultrasensitive measurements in many fields of physics, and is the basis of our most precise atomic clocks. Key to a high sensitivity is the possibility to achieve long measurement times and precise readout. Ultracold atoms can be precisely manipulated at the quantum level and can be held for very long times in traps; they would therefore be an ideal setting for interferometry. In this paper, we discuss how the nonlinearities from atom?atom interactions, on the one hand, allow us to efficiently produce squeezed states for enhanced readout and, on the other hand, result in phase diffusion that limits the phase accumulation time. We find that low-dimensional geometries are favorable, with two-dimensional (2D) settings giving the smallest contribution of phase diffusion caused by atom?atom interactions. Even for time sequences generated by optimal control, the achievable minimal detectable interaction energy ?Emin is of the order of 10?4?, where ? is the chemical potential of the Bose?Einstein condensate (BEC) in the trap. From these we have to conclude that for more precise measurements with atom interferometers, more sophisticated strategies, or turning off the interaction-induced dephasing during the phase accumulation stage, will be necessary.
Physical Review Letters | 2010
Sebastian Hofferberth; Igor E. Mazets; Igor Lesanovsky; Jörg Schmiedmayer
We prepare a chemically and thermally one-dimensional (1D) quantum degenerate Bose gas in a single microtrap. We introduce a new interferometric method to distinguish the quasicondensate fraction of the gas from the thermal cloud at finite temperature. We reach temperatures down to kT≈0.5ℏω(⊥) (transverse oscillator eigenfrequency ω(⊥)) when collisional thermalization slows down as expected in 1D. At the lowest temperatures the transverse-momentum distribution exhibits a residual dependence on the line density n(1D), characteristic for 1D systems. For very low densities the approach to the transverse single-particle ground state is linear in n(1D).
Nature | 2017
Thomas Schweigler; Valentin Kasper; Sebastian Erne; Igor E. Mazets; Bernhard Rauer; Federica Cataldini; Tim Langen; Thomas Gasenzer; Jürgen Berges; Jörg Schmiedmayer
Knowledge of all correlation functions of a system is equivalent to solving the corresponding many-body problem. Already a finite set of correlation functions can be sufficient to describe a quantum many-body system if correlations factorise, at least approximately. While being a powerful theoretical concept, an implementation based on experimental data has so far remained elusive. Here, this is achieved by applying it to a non-trivial quantum many-body problem: A pair of tunnel-coupled one-dimensional atomic superfluids. From measured interference patterns we extract phase correlation functions up to tenth order and analyse if, and under which conditions, they factorise. This characterises the essential features of the system, the relevant quasiparticles, their interactions and possible topologically distinct vacua. We verify that in thermal equilibrium the physics can be described by the quantum sine-Gordon model, relevant for a wide variety of disciplines from particle to condensed-matter physics. Our experiment establishes a general method to analyse quantum many-body systems in experiments. It represents a crucial ingredient towards the implementation and verification of quantum simulators.Quantum systems can be characterized by their correlations. Higher-order (larger than second order) correlations, and the ways in which they can be decomposed into correlations of lower order, provide important information about the system, its structure, its interactions and its complexity. The measurement of such correlation functions is therefore an essential tool for reading, verifying and characterizing quantum simulations. Although higher-order correlation functions are frequently used in theoretical calculations, so far mainly correlations up to second order have been studied experimentally. Here we study a pair of tunnel-coupled one-dimensional atomic superfluids and characterize the corresponding quantum many-body problem by measuring correlation functions. We extract phase correlation functions up to tenth order from interference patterns and analyse whether, and under what conditions, these functions factorize into correlations of lower order. This analysis characterizes the essential features of our system, the relevant quasiparticles, their interactions and topologically distinct vacua. From our data we conclude that in thermal equilibrium our system can be seen as a quantum simulator of the sine-Gordon model, relevant for diverse disciplines ranging from particle physics to condensed matter. The measurement and evaluation of higher-order correlation functions can easily be generalized to other systems and to study correlations of any other observable such as density, spin and magnetization. It therefore represents a general method for analysing quantum many-body systems from experimental data.
Scientific Reports | 2015
Wolfgang Rohringer; Dominik Fischer; Florian M. Steiner; Igor E. Mazets; Jörg Schmiedmayer; Michael Trupke
We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating.