Igor Marín de Mas
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Igor Marín de Mas.
BMC Systems Biology | 2011
Dieter Maier; Wenzel Kalus; Martin Wolff; Susana G. Kalko; Josep Roca; Igor Marín de Mas; Nil Turan; Marta Cascante; Francesco Falciani; Miguel Hernandez; Jordi Villà-Freixa; Sascha Losko
BackgroundTo enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype - phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory.ResultsTo address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD) knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data.ConclusionsWe generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the retrieval of sub-networks including protein-protein interaction, pathway, gene - disease and gene - compound data which are used for subsequent data analysis, modelling and simulation. Pre-structured queries and reports enhance usability; establishing their use in everyday clinical settings requires further simplification with a browser based interface which is currently under development.
Journal of Immunology | 2012
Paqui G. Través; Pedro de Atauri; Silvia Marin; María Pimentel-Santillana; Juan-Carlos Rodríguez-Prados; Igor Marín de Mas; Vitaly A. Selivanov; Lisardo Boscá; Marta Cascante
The activation of immune cells in response to a pathogen involves a succession of signaling events leading to gene and protein expression, which requires metabolic changes to match the energy demands. The metabolic profile associated with the MAPK cascade (ERK1/2, p38, and JNK) in macrophages was studied, and the effect of its inhibition on the specific metabolic pattern of LPS stimulation was characterized. A [1,2-[13C]2]glucose tracer-based metabolomic approach was used to examine the metabolic flux distribution in these cells after MEK/ERK inhibition. Bioinformatic tools were used to analyze changes in mass isotopomer distribution and changes in glucose and glutamine consumption and lactate production in basal and LPS-stimulated conditions in the presence and absence of the selective inhibitor of the MEK/ERK cascade, PD325901. Results showed that PD325901-mediated ERK1/2 inhibition significantly decreased glucose consumption and lactate production but did not affect glutamine consumption. These changes were accompanied by a decrease in the glycolytic flux, consistent with the observed decrease in fructose-2,6-bisphosphate concentration. The oxidative and nonoxidative pentose phosphate pathways and the ratio between them also decreased. However, tricarboxylic acid cycle flux did not change significantly. LPS activation led to the opposite responses, although all of these were suppressed by PD325901. However, LPS also induced a small decrease in pentose phosphate pathway fluxes and an increase in glutamine consumption that were not affected by PD325901. We concluded that inhibition of the MEK/ERK cascade interferes with central metabolism, and this cross-talk between signal transduction and metabolism also occurs in the presence of LPS.
Stem Cells | 2016
Esther Aguilar; Igor Marín de Mas; Erika Zodda; Silvia Marin; Fionnuala Morrish; Vitaly A. Selivanov; Óscar Meca-Cortés; Hossain Delowar; Mònica Pons; Inés Izquierdo; Toni Celià-Terrassa; Pedro de Atauri; Josep J. Centelles; David M. Hockenbery; Timothy M. Thomson; Marta Cascante
In solid tumors, cancer stem cells (CSCs) can arise independently of epithelial‐mesenchymal transition (EMT). In spite of recent efforts, the metabolic reprogramming associated with CSC phenotypes uncoupled from EMT is poorly understood. Here, by using metabolomic and fluxomic approaches, we identify major metabolic profiles that differentiate metastatic prostate epithelial CSCs (e‐CSCs) from non‐CSCs expressing a stable EMT. We have found that the e‐CSC program in our cellular model is characterized by a high plasticity in energy substrate metabolism, including an enhanced Warburg effect, a greater carbon and energy source flexibility driven by fatty acids and amino acid metabolism and an essential reliance on the proton buffering capacity conferred by glutamine metabolism. An analysis of transcriptomic data yielded a metabolic gene signature for our e‐CSCs consistent with the metabolomics and fluxomics analyses that correlated with tumor progression and metastasis in prostate cancer and in 11 additional cancer types. Interestingly, an integrated metabolomics, fluxomics, and transcriptomics analysis allowed us to identify key metabolic players regulated at the post‐transcriptional level, suggesting potential biomarkers and therapeutic targets to effectively forestall metastasis. Stem Cells 2016;34:1163–1176
Journal of Translational Medicine | 2014
David Gomez-Cabrero; Jörg Menche; Isaac Cano; Imad Abugessaisa; Mercedes Huertas-Migueláñez; Ákos Tényi; Igor Marín de Mas; Narsis A. Kiani; Francesco Marabita; Francesco Falciani; Kelly Burrowes; Dieter Maier; Peter D. Wagner; Vitaly A. Selivanov; Marta Cascante; Josep Roca; Albert-László Barabási; Jesper Tegnér
Background and hypothesisChronic Obstructive Pulmonary Disease (COPD) patients are characterized by heterogeneous clinical manifestations and patterns of disease progression. Two major factors that can be used to identify COPD subtypes are muscle dysfunction/wasting and co-morbidity patterns. We hypothesized that COPD heterogeneity is in part the result of complex interactions between several genes and pathways. We explored the possibility of using a Systems Medicine approach to identify such pathways, as well as to generate predictive computational models that may be used in clinic practice.Objective and methodOur overarching goal is to generate clinically applicable predictive models that characterize COPD heterogeneity through a Systems Medicine approach. To this end we have developed a general framework, consisting of three steps/objectives: (1) feature identification, (2) model generation and statistical validation, and (3) application and validation of the predictive models in the clinical scenario. We used muscle dysfunction and co-morbidity as test cases for this framework.ResultsIn the study of muscle wasting we identified relevant features (genes) by a network analysis and generated predictive models that integrate mechanistic and probabilistic models. This allowed us to characterize muscle wasting as a general de-regulation of pathway interactions. In the co-morbidity analysis we identified relevant features (genes/pathways) by the integration of gene-disease and disease-disease associations. We further present a detailed characterization of co-morbidities in COPD patients that was implemented into a predictive model. In both use cases we were able to achieve predictive modeling but we also identified several key challenges, the most pressing being the validation and implementation into actual clinical practice.ConclusionsThe results confirm the potential of the Systems Medicine approach to study complex diseases and generate clinically relevant predictive models. Our study also highlights important obstacles and bottlenecks for such approaches (e.g. data availability and normalization of frameworks among others) and suggests specific proposals to overcome them.
BMC Systems Biology | 2011
Igor Marín de Mas; Vitaly A. Selivanov; Silvia Marin; Josep Roca; Matej Orešič; Loranne Agius; Marta Cascante
BackgroundStable isotope tracers are used to assess metabolic flux profiles in living cells. The existing methods of measurement average out the isotopic isomer distribution in metabolites throughout the cell, whereas the knowledge of compartmental organization of analyzed pathways is crucial for the evaluation of true fluxes. That is why we accepted a challenge to create a software tool that allows deciphering the compartmentation of metabolites based on the analysis of average isotopic isomer distribution.ResultsThe software Isodyn, which simulates the dynamics of isotopic isomer distribution in central metabolic pathways, was supplemented by algorithms facilitating the transition between various analyzed metabolic schemes, and by the tools for model discrimination. It simulated 13C isotope distributions in glucose, lactate, glutamate and glycogen, measured by mass spectrometry after incubation of hepatocytes in the presence of only labeled glucose or glucose and lactate together (with label either in glucose or lactate). The simulations assumed either a single intracellular hexose phosphate pool, or also channeling of hexose phosphates resulting in a different isotopic composition of glycogen. Model discrimination test was applied to check the consistency of both models with experimental data. Metabolic flux profiles, evaluated with the accepted model that assumes channeling, revealed the range of changes in metabolic fluxes in liver cells.ConclusionsThe analysis of compartmentation of metabolic networks based on the measured 13C distribution was included in Isodyn as a routine procedure. The advantage of this implementation is that, being a part of evaluation of metabolic fluxes, it does not require additional experiments to study metabolic compartmentation. The analysis of experimental data revealed that the distribution of measured 13C-labeled glucose metabolites is inconsistent with the idea of perfect mixing of hexose phosphates in cytosol. In contrast, the observed distribution indicates the presence of a separate pool of hexose phosphates that is channeled towards glycogen synthesis.
Journal of Translational Medicine | 2014
Marta Cascante; Pedro de Atauri; David Gomez-Cabrero; Peter D. Wagner; Josep J. Centelles; Silvia Marin; Isaac Cano; Filip Velickovski; Igor Marín de Mas; Dieter Maier; Josep Roca; Philippe Sabatier
The article addresses the strategic role of workforce preparation in the process of adoption of Systems Medicine as a driver of biomedical research in the new health paradigm. It reports on relevant initiatives, like CASyM, fostering Systems Medicine at EU level. The chapter focuses on the BioHealth Computing Program as a reference for multidisciplinary training of future systems-oriented researchers describing the productive interactions with the Synergy-COPD project.
Bioinformatics | 2017
Igor Marín de Mas; Eric Fanchon; Balázs Papp; Susana G. Kalko; Josep Roca; Marta Cascante
Motivation: Skeletal muscle dysfunction is a systemic effect in one-third of patients with chronic obstructive pulmonary disease (COPD), characterized by high reactive-oxygen-species (ROS) production and abnormal endurance training-induced adaptive changes. However, the role of ROS in COPD remains unclear, not least because of the lack of appropriate tools to study multifactorial diseases. Results: We describe a discrete model-driven method combining mechanistic and probabilistic approaches to decipher the role of ROS on the activity state of skeletal muscle regulatory network, assessed before and after an 8-week endurance training program in COPD patients and healthy subjects. In COPD, our computational analysis indicates abnormal training-induced regulatory responses leading to defective tissue remodeling and abnormal energy metabolism. Moreover, we identified tnf, insr, inha and myc as key regulators of abnormal training-induced adaptations in COPD. The tnf-insr pair was identified as a promising target for therapeutic interventions. Our work sheds new light on skeletal muscle dysfunction in COPD, opening new avenues for cost-effective therapies. It overcomes limitations of previous computational approaches showing high potential for the study of other multi-factorial diseases such as diabetes or cancer. Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.
PLOS Computational Biology | 2018
Igor Marín de Mas; Esther Aguilar; Erika Zodda; Cristina Balcells; Silvia Marin; Guido Dallmann; Timothy M. Thomson; Balázs Papp; Marta Cascante
Epithelial-mesenchymal-transition promotes intra-tumoral heterogeneity, by enhancing tumor cell invasiveness and promoting drug resistance. We integrated transcriptomic data for two clonal subpopulations from a prostate cancer cell line (PC-3) into a genome-scale metabolic network model to explore their metabolic differences and potential vulnerabilities. In this dual cell model, PC-3/S cells express Epithelial-mesenchymal-transition markers and display high invasiveness and low metastatic potential, while PC-3/M cells present the opposite phenotype and higher proliferative rate. Model-driven analysis and experimental validations unveiled a marked metabolic reprogramming in long-chain fatty acids metabolism. While PC-3/M cells showed an enhanced entry of long-chain fatty acids into the mitochondria, PC-3/S cells used long-chain fatty acids as precursors of eicosanoid metabolism. We suggest that this metabolic reprogramming endows PC-3/M cells with augmented energy metabolism for fast proliferation and PC-3/S cells with increased eicosanoid production impacting angiogenesis, cell adhesion and invasion. PC-3/S metabolism also promotes the accumulation of docosahexaenoic acid, a long-chain fatty acid with antiproliferative effects. The potential therapeutic significance of our model was supported by a differential sensitivity of PC-3/M cells to etomoxir, an inhibitor of long-chain fatty acid transport to the mitochondria.
Frontiers in Molecular Biosciences | 2017
Igor Marín de Mas; Silvia Marin; Gisela Pachón; Juan Carlos Rodriguez-Prados; Pedro Vizán; Josep J. Centelles; Romà Tauler; Amaya Azqueta; Vitaly A. Selivanov; Adela López de Cerain; Marta Cascante
Rhabdomyolysis is a disorder characterized by acute damage of the sarcolemma of the skeletal muscle leading to release of potentially toxic muscle cell components into the circulation, most notably creatine phosphokinase (CK) and myoglobulin, and is frequently accompanied by myoglobinuria. In the present work, we evaluated the toxicity of p-phenylenediamine (PPD), a main component of hair dyes which is reported to induce rhabdomyolysis. We studied the metabolic effect of this compound in vivo with Wistar rats and in vitro with C2C12 muscle cells. To this aim we have combined multi-omic experimental measurements with computational approaches using model-driven methods. The integrative study presented here has unveiled the metabolic disorders associated to PPD exposure that may underlay the aberrant metabolism observed in rhabdomyolys disease. Animals treated with lower doses of PPD (10 and 20 mg/kg) showed depressed activity and myoglobinuria after 10 h of treatment. We measured the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatine kinase (CK) in rats after 24, 48, and 72 h of PPD exposure. At all times, treatment with PPD at higher doses (40 and 60 mg/kg) showed an increase of AST and ALT, and also an increase of lactate dehydrogenase (LDH) and CK after 24 h. Blood packed cell volume and hemoglobin levels, as well as organs weight at 48 and 72 h, were also measured. No significant differences were observed in these parameters under any condition. PPD induce cell cycle arrest in S phase and apoptosis (40% or early apoptotic cells) on mus musculus mouse C2C12 cells after 24 h of treatment. Incubation of mus musculus mouse C2C12 cells with [1,2-13C2]-glucose during 24 h, subsequent quantification of 13C isotopologues distribution in key metabolites of glucose metabolic network and a computational fluxomic analysis using in-house developed software (Isodyn) showed that PPD is inhibiting glycolysis, non-oxidative pentose phosphate pathway, glycogen turnover, and ATPAse reaction leading to a reduction in ATP synthesis. These findings unveil the glucose metabolism collapse, which is consistent with a decrease in cell viability observed in PPD-treated C2C12 cells and with the myoglubinuria and other effects observed in Wistar Rats treated with PPD. These findings shed new light on muscle dysfunction associated to PPD exposure, opening new avenues for cost-effective therapies in Rhabdomyolysis disease.
Journal of Translational Medicine | 2014
Josep Roca; Claudia Vargas; Isaac Cano; Vitaly A. Selivanov; Esther Barreiro; Dieter Maier; Francesco Falciani; Peter D. Wagner; Marta Cascante; Judith Garcia-Aymerich; Susana G. Kalko; Igor Marín de Mas; Jesper Tegnér; Joan Escarrabill; Alvar Agusti; David Gomez-Cabrero