Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pedro de Atauri is active.

Publication


Featured researches published by Pedro de Atauri.


Molecular Biology Reports | 2002

Metabolic control analysis aimed at the ribose synthesis pathways of tumor cells: a new strategy for antitumor drug development.

Joan Boren; Antonio Ramos Montoya; Pedro de Atauri; Begoña Comin-Anduix; Antonio Cortés; Josep J. Centelles; Wilma M. Frederiks; Cornelis J. F. Van Noorden; Marta Cascante

Metabolic control analysis predicts that effects on tumor growth are likely to be obtained with lower concentrations of drug, if an enzyme with a high control coefficient on tumor growth is being inhibited. Here we measure glucose-6-phosphate dehydrogenase (G6PDH) control coefficient on in vivo tumor growth using mice bearing Ehrlich ascites tumor cells. We used dehydroepiandrosterone-sulphate (DHEA-S), an uncompetitive inhibitor of this enzyme and the in situ cytochemical method to measure the enzyme activity changes that accompany changes on tumor cell growth. This method ensures that the enzyme activity determined is the one existing in the in situ conditions and enables computing a control coefficient in in situ conditions. From the data obtained on tumor cell number and the in situ enzyme activities in absence and presence of DHEA-S, a control coefficient of 0.41 for G6PDH on tumor cell growth was computed. This value is approximately the half of the transketolase control coefficient value of 0.9 previously reported. Moreover, the use of in situ methods to assess enzyme activities, applied for first time for the calculation of control coefficients in this study, opens new avenues to the use of uncompetitive inhibitors for the measurement of in situ control coefficients.


Journal of Immunology | 2012

Relevance of the MEK/ERK Signaling Pathway in the Metabolism of Activated Macrophages: A Metabolomic Approach

Paqui G. Través; Pedro de Atauri; Silvia Marin; María Pimentel-Santillana; Juan-Carlos Rodríguez-Prados; Igor Marín de Mas; Vitaly A. Selivanov; Lisardo Boscá; Marta Cascante

The activation of immune cells in response to a pathogen involves a succession of signaling events leading to gene and protein expression, which requires metabolic changes to match the energy demands. The metabolic profile associated with the MAPK cascade (ERK1/2, p38, and JNK) in macrophages was studied, and the effect of its inhibition on the specific metabolic pattern of LPS stimulation was characterized. A [1,2-[13C]2]glucose tracer-based metabolomic approach was used to examine the metabolic flux distribution in these cells after MEK/ERK inhibition. Bioinformatic tools were used to analyze changes in mass isotopomer distribution and changes in glucose and glutamine consumption and lactate production in basal and LPS-stimulated conditions in the presence and absence of the selective inhibitor of the MEK/ERK cascade, PD325901. Results showed that PD325901-mediated ERK1/2 inhibition significantly decreased glucose consumption and lactate production but did not affect glutamine consumption. These changes were accompanied by a decrease in the glycolytic flux, consistent with the observed decrease in fructose-2,6-bisphosphate concentration. The oxidative and nonoxidative pentose phosphate pathways and the ratio between them also decreased. However, tricarboxylic acid cycle flux did not change significantly. LPS activation led to the opposite responses, although all of these were suppressed by PD325901. However, LPS also induced a small decrease in pentose phosphate pathway fluxes and an increase in glutamine consumption that were not affected by PD325901. We concluded that inhibition of the MEK/ERK cascade interferes with central metabolism, and this cross-talk between signal transduction and metabolism also occurs in the presence of LPS.


Stem Cells | 2016

Metabolic Reprogramming and Dependencies Associated with Epithelial Cancer Stem Cells Independent of the Epithelial‐Mesenchymal Transition Program

Esther Aguilar; Igor Marín de Mas; Erika Zodda; Silvia Marin; Fionnuala Morrish; Vitaly A. Selivanov; Óscar Meca-Cortés; Hossain Delowar; Mònica Pons; Inés Izquierdo; Toni Celià-Terrassa; Pedro de Atauri; Josep J. Centelles; David M. Hockenbery; Timothy M. Thomson; Marta Cascante

In solid tumors, cancer stem cells (CSCs) can arise independently of epithelial‐mesenchymal transition (EMT). In spite of recent efforts, the metabolic reprogramming associated with CSC phenotypes uncoupled from EMT is poorly understood. Here, by using metabolomic and fluxomic approaches, we identify major metabolic profiles that differentiate metastatic prostate epithelial CSCs (e‐CSCs) from non‐CSCs expressing a stable EMT. We have found that the e‐CSC program in our cellular model is characterized by a high plasticity in energy substrate metabolism, including an enhanced Warburg effect, a greater carbon and energy source flexibility driven by fatty acids and amino acid metabolism and an essential reliance on the proton buffering capacity conferred by glutamine metabolism. An analysis of transcriptomic data yielded a metabolic gene signature for our e‐CSCs consistent with the metabolomics and fluxomics analyses that correlated with tumor progression and metastasis in prostate cancer and in 11 additional cancer types. Interestingly, an integrated metabolomics, fluxomics, and transcriptomics analysis allowed us to identify key metabolic players regulated at the post‐transcriptional level, suggesting potential biomarkers and therapeutic targets to effectively forestall metastasis. Stem Cells 2016;34:1163–1176


Biochemical Society Transactions | 2010

Metabolic network adaptations in cancer as targets for novel therapies

Marta Cascante; Adrián Benito; Miriam Zanuy; Pedro Vizán; Silvia Marin; Pedro de Atauri

Metabolite concentrations and fluxes are the system variables that characterize metabolism. The systematic study of metabolite profiles is known as metabolomics; however, knowledge of the complete set of metabolites may not be enough to predict distinct phenotypes. A complete understanding of metabolic processes requires detailed knowledge of enzyme-controlled intracellular fluxes. These can be estimated through quantitative measurements of metabolites at different times or by analysing the stable isotope patterns obtained after incubation with labelled substrates. We have identified distinct intracellular fluxes associated with metabolic adaptations accompanying cancer. The maintenance of an imbalance between fluxes for the oxidative and non-oxidative PPP (pentose phosphate pathway) has been shown to be critical for angiogenesis and cancer cell survival. Mouse NIH 3T3 cells transformed by different mutated K-ras oncogenes have differential routing of glucose to anaerobic glycolysis, the PPP and the Krebs cycle. These results indicate that knowledge of metabolic fingerprints associated with an altered genetic profile could be exploited in the rational design of new therapies. We conclude that the understanding of the multifactorial nature of metabolic adaptations in cancer may open new ways to develop novel multi-hit antitumoral therapies.


Oncotarget | 2016

Oncogenic regulation of tumor metabolic reprogramming

Míriam Tarrado-Castellarnau; Pedro de Atauri; Marta Cascante

Development of malignancy is accompanied by a complete metabolic reprogramming closely related to the acquisition of most of cancer hallmarks. In fact, key oncogenic pathways converge to adapt the metabolism of carbohydrates, proteins, lipids and nucleic acids to the dynamic tumor microenvironment, conferring a selective advantage to cancer cells. Therefore, metabolic properties of tumor cells are significantly different from those of non-transformed cells. In addition, tumor metabolic reprogramming is linked to drug resistance in cancer treatment. Accordingly, metabolic adaptations are specific vulnerabilities that can be used in different therapeutic approaches for cancer therapy. In this review, we discuss the dysregulation of the main metabolic pathways that enable cell transformation and its association with oncogenic signaling pathways, focusing on the effects of c-MYC, hypoxia inducible factor 1 (HIF1), phosphoinositide-3-kinase (PI3K), and the mechanistic target of rapamycin (mTOR) on cancer cell metabolism. Elucidating these connections is of crucial importance to identify new targets and develop selective cancer treatments that improve response to therapy and overcome the emerging resistance to chemotherapeutics.


PLOS ONE | 2014

Effects of cadmium and mercury on the upper part of skeletal muscle glycolysis in mice.

María José Ramírez-Bajo; Pedro de Atauri; Fernando Ortega; Hans V. Westerhoff; Josep Lluís Gelpí; Josep J. Centelles; Marta Cascante

The effects of pre-incubation with mercury (Hg2+) and cadmium (Cd2+) on the activities of individual glycolytic enzymes, on the flux and on internal metabolite concentrations of the upper part of glycolysis were investigated in mouse muscle extracts. In the range of metal concentrations analysed we found that only hexokinase and phosphofructokinase, the enzymes that shared the control of the flux, were inhibited by Hg2+ and Cd2+. The concentrations of the internal metabolites glucose-6-phosphate and fructose-6-phosphate did not change significantly when Hg2+ and Cd2+ were added. A mathematical model was constructed to explore the mechanisms of inhibition of Hg2+ and Cd2+ on hexokinase and phosphofructokinase. Equations derived from detailed mechanistic models for each inhibition were fitted to the experimental data. In a concentration-dependent manner these equations describe the observed inhibition of enzyme activity. Under the conditions analysed, the integral model showed that the simultaneous inhibition of hexokinase and phosphofructokinase explains the observation that the concentrations of glucose-6-phosphate and fructose-6-phosphate did not change as the heavy metals decreased the glycolytic flux.


Biotechnology and Bioengineering | 2009

In silico strategy to rationally engineer metabolite production: A case study for threonine in Escherichia coli

Juan-Carlos Rodríguez-Prados; Pedro de Atauri; Jérôme Maury; Fernando Ortega; Jean-Charles Portais; Christophe Chassagnole; Luis Acerenza; Nic D. Lindley; Marta Cascante

Genetic engineering of metabolic pathways is a standard strategy to increase the production of metabolites of economic interest. However, such flux increases could very likely lead to undesirable changes in metabolite concentrations, producing deleterious perturbations on other cellular processes. These negative effects could be avoided by implementing a balanced increase of enzyme concentrations according to the Universal Method [Kacser and Acerenza (1993) Eur J Biochem 216:361–367]. Exact application of the method usually requires modification of many reactions, which is difficult to achieve in practice. Here, improvement of threonine production via pyruvate kinase deletion in Escherichia coli is used as a case study to demonstrate a partial application of the Universal Method, which includes performing sensitivity analysis. Our analysis predicts that manipulating a few reactions is sufficient to obtain an important increase in threonine production without major perturbations of metabolite concentrations. Biotechnol. Bioeng. 2009;103: 609–620.


Journal of Translational Medicine | 2014

Workforce preparation: the Biohealth computing model for Master and PhD students

Marta Cascante; Pedro de Atauri; David Gomez-Cabrero; Peter D. Wagner; Josep J. Centelles; Silvia Marin; Isaac Cano; Filip Velickovski; Igor Marín de Mas; Dieter Maier; Josep Roca; Philippe Sabatier

The article addresses the strategic role of workforce preparation in the process of adoption of Systems Medicine as a driver of biomedical research in the new health paradigm. It reports on relevant initiatives, like CASyM, fostering Systems Medicine at EU level. The chapter focuses on the BioHealth Computing Program as a reference for multidisciplinary training of future systems-oriented researchers describing the productive interactions with the Synergy-COPD project.


Biochimica et Biophysica Acta | 2011

Carbon metabolism and the sign of control coefficients in metabolic adaptations underlying K-ras transformation.

Pedro de Atauri; Adrián Benito; Pedro Vizán; Miriam Zanuy; Ramon Mangues; Silvia Marin; Marta Cascante

Metabolic adaptations are associated with changes in enzyme activities. These adaptations are characterized by patterns of positive and negative changes in metabolic fluxes and concentrations of intermediate metabolites. Knowledge of the mechanism and parameters governing enzyme kinetics is rarely available. However, the signs-increases or decreases-of many of these changes can be predicted using the signs of metabolic control coefficients. These signs require the only knowledge of the structure of the metabolic network and a limited qualitative knowledge of the regulatory dependences, which is widely available for carbon metabolism. Here, as a case study, we identified control coefficients with fixed signs in order to predict the pattern of changes in key enzyme activities which can explain the observed changes in fluxes and concentrations underlying the metabolic adaptations in oncogenic K-ras transformation in NIH-3T3 cells. The fixed signs of control coefficients indicate that metabolic changes following the oncogenic transformation-increased glycolysis and oxidative branch of the pentose-phosphate pathway, and decreased concentration in sugar-phosphates-could be associated with increases in activity for glucose-6-phosphate dehydrogenase, pyruvate kinase and lactate dehydrogenase, and decrease for transketolase. These predictions were validated experimentally by measuring specific activities. We conclude that predictions based on fixed signs of control coefficients are a very robust tool for the identification of changes in enzyme activities that can explain observed metabolic adaptations in carbon metabolism.


Comptes Rendus Biologies | 2003

Dynamic simulation of pollutant effects on the threonine pathway in Escherichia coli

Christophe Chassagnole; Éric Quentin; David A. Fell; Pedro de Atauri; Jean-Pierre Mazat

The enzymatic activities of threonine pathway in Escherichia coli are sensitive to pollutants such as cadmium, copper and mercury, which, even at low concentration, can substantially decrease or even block the pathway at several steps. Our aim was to investigate the complex effects on a metabolic pathway of such general enzyme inhibitors with several sites of action, using a previously developed computer simulation of the pathway. For this purpose, the inhibition parameters were experimentally determined and incorporated in the model. The calculation of the flux control coefficient distribution between the five steps of the threonine pathway showed that control remains shared between the three first steps under most inhibition conditions. Response coefficient analysis shows that the inhibition of aspartate semialdehyde dehydrogenase is quantitatively dominant in most circumstances.

Collaboration


Dive into the Pedro de Atauri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Marin

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isaac Cano

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Josep Roca

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge