Igor Marques
University of Aveiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Igor Marques.
Nature Chemistry | 2014
Matthew J. Langton; Sean W. Robinson; Igor Marques; Vítor Félix; Paul D. Beer
Halogen bonding (XB), the attractive interaction between an electron-deficient halogen atom and a Lewis base, has undergone a dramatic development as an intermolecular force analogous to hydrogen bonding (HB). However, its utilization in the solution phase remains underdeveloped. Furthermore, the design of receptors capable of strong and selective recognition of anions in water remains a significant challenge. Here we demonstrate the superiority of halogen bonding over hydrogen bonding for strong anion binding in water, to the extent that halide recognition by a simple acyclic mono-charged receptor is achievable. Quantification of iodide binding by rotaxane hosts reveals the strong binding by the XB-rotaxane is driven exclusively by favourable enthalpic contributions arising from the halogen-bonding interactions, whereas weaker association with the HB-rotaxanes is entropically driven. These observations demonstrate the unique nature of halogen bonding in water as a strong alternative interaction to the ubiquitous hydrogen bonding in molecular recognition and assembly.
Chemical Science | 2013
Stephen J. Moore; Cally J. E. Haynes; Jorge González; Jennifer L. Sutton; Simon J. Brooks; Mark E. Light; Julie Herniman; G. John Langley; Vanessa Soto-Cerrato; Ricardo Pérez-Tomás; Igor Marques; Paulo J. Costa; Vítor Félix; Philip A. Gale
Highly potent but structurally simple transmembrane anion transporters are reported that function at receptor to lipid ratios as low as 1:1000000. The compounds, based on the simple ortho-phenylenediamine-based bisurea scaffold, have been studied for their ability to facilitate chloride/nitrate and chloride/bicarbonate antiport, and HCl symport processes using a combination of ion selective electrode and fluorescence techniques. In addition, the transmembrane transport of dicarboxylate anions (maleate and fumarate) by the compounds was examined. Molecular dynamics simulations showed that these compounds permeate the membrane more easily than other promising receptors corroborating the experimental efflux data. Moreover, cell based assays revealed that the majority of the compounds showed cytotoxicity in cancer cells, which may be linked to their ability to function as ion transporters.
Chemical Communications | 2012
Vittorio Saggiomo; Sijbren Otto; Igor Marques; Vítor Félix; Tomás Torroba; Roberto Quesada
The transmembrane anion transport activity of a series of synthetic molecules inspired by the structure of tambjamine alkaloids can be tuned by varying the lipophilicity of the receptor, with carriers within a certain log P range performing best.
Chemical Science | 2013
Nathalie Busschaert; Samuel J. Bradberry; Marco Wenzel; Cally J. E. Haynes; Jennifer R. Hiscock; Isabelle L. Kirby; Louise E. Karagiannidis; Stephen J. Moore; Neil J. Wells; Julie Herniman; G. John Langley; Peter N. Horton; Mark E. Light; Igor Marques; Paulo J. Costa; Vítor Félix; Jeremy G. Frey; Philip A. Gale
The transport of anions across biological membranes by small molecules is a growing research field due to the potential therapeutic benefits of these compounds. However, little is known about the exact mechanism by which these drug-like molecules work and which molecular features make a good transporter. An extended series of 1-hexyl-3-phenylthioureas were synthesized, fully characterized (NMR, mass spectrometry, IR and single crystal diffraction) and their anion binding and anion transport properties were assessed using 1H NMR titration techniques and a variety of vesicle-based experiments. Quantitative structure–activity relationship (QSAR) analysis revealed that the anion binding abilities of the mono-thioureas are dominated by the (hydrogen bond) acidity of the thiourea NH function. Furthermore, mathematical models show that the experimental transmembrane anion transport ability is mainly dependent on the lipophilicity of the transporter (partitioning into the membrane), but smaller contributions of molecular size (diffusion) and hydrogen bond acidity (anion binding) were also present. Finally, we provide the first step towards predictable anion transport by employing the QSAR equations to estimate the transmembrane transport ability of four new compounds.
Organic and Biomolecular Chemistry | 2014
Cally J. E. Haynes; Nathalie Busschaert; Isabelle L. Kirby; Julie Herniman; Mark E. Light; Neil J. Wells; Igor Marques; Vítor Félix; Philip A. Gale
Small molecule synthetic anion transporters may have potential application as therapeutic agents for the treatment of diseases including cystic fibrosis and cancer. Understanding the factors that can dictate the anion transport activity of such transporters is a crucial step towards their application in biological systems. In this study a series of acylthiourea anion transporters were synthesised and their anion binding and transport properties in POPC bilayers have been investigated. The transport activity of these receptors is dominated by their lipophilicity, which is in turn dependent on both substituent effects and the formation and strength of an intramolecular hydrogen bond as inferred from DFT calculations. This is in contrast to simpler thiourea systems, in which the lipophilicity depends predominantly on substituent effects alone.
Journal of the American Chemical Society | 2017
Jason Y. C. Lim; Igor Marques; Amber L. Thompson; Kirsten E. Christensen; Vítor Félix; Paul D. Beer
Electron-deficient heavy chalcogen atoms contain Lewis acidic σ-holes which are able to form attractive supramolecular interactions, known as chalcogen bonding (ChB), with Lewis bases. However, their potential in solution-phase anion binding applications is only just beginning to be realized in simple acyclic systems. Herein, we explore the 5-(methylchalcogeno)-1,2,3-triazole (chalcogen = Se, Te) motif as a novel ChB donor for anion binding. Other than being chemically robust enough to be incorporated into macrocyclic structures, thereby significantly expanding the scope and complexity of ChB host systems, we also demonstrate, by 1H NMR and DFT calculations, that the chalcogen atoms oriented within the macrocycle cavity are able to chelate copper(I) endotopically. Exploiting this property, the first examples of mechanically interlocked [2]rotaxanes containing ChB-donor groups are prepared via an active metal template strategy. Solution-phase 1H NMR and molecular modeling studies provide compelling evidence for the dominant influence of ChB in anion binding by these interlocked host systems. In addition, unprecedented charge-assisted ChB-mediated anion binding was also studied in aqueous solvent mixtures, which revealed considerable differences in anion recognition behavior in comparison with chalcogen-free host analogues. Moreover, DFT calculations and molecular dynamics simulations in aqueous solvent mixtures indicate that the selectivity is determined by the different hydrophilic characters of the anions allied to the hydration of the binding units in the presence of the anions. Exploiting the NMR-active nuclei of the ChB-donor chalcogen atoms, heteronuclear 77Se and 125Te NMR were used to directly study how anion recognition influences the local electronic environment of the chalcogen atoms in the mechanically bonded rotaxane binding sites in organic and aqueous solvent mixtures.
Chemical Science | 2012
Cally J. E. Haynes; Stephen J. Moore; Jennifer R. Hiscock; Igor Marques; Paulo J. Costa; Vítor Félix; Philip A. Gale
A series of bis-indolylureas have been found to mediate chloride transport across vesicle bilayers. The anion transport activity of these receptors may be readily modulated by small structural changes to the receptor scaffold as shown by the combination of experimental chloride efflux studies and molecular dynamics simulations in water and POPC bilayers.
Chemistry: A European Journal | 2016
Matthew J. Langton; Igor Marques; Sean W. Robinson; Vítor Félix; Paul D. Beer
Abstract The synthesis and anion‐recognition properties of the first halogen‐bonding rotaxane host to sense anions in water is described. The rotaxane features a halogen‐bonding axle component, which is stoppered with water‐solubilizing permethylated β‐cyclodextrin motifs, and a luminescent tris(bipyridine)ruthenium(II)‐based macrocycle component. 1H NMR anion‐binding titrations in D2O reveal the halogen‐bonding rotaxane to bind iodide with high affinity and with selectively over the smaller halide anions and sulfate. The binding affinity trend was explained through molecular dynamics simulations and free‐energy calculations. Photo‐physical investigations demonstrate the ability of the interlocked halogen‐bonding host to sense iodide in water, through enhancement of the macrocycle component’s RuII metal–ligand charge transfer (MLCT) emission.
Nature Chemistry | 2017
Nathalie Busschaert; Seong Hyun Park; Kyung Hwa Baek; Yoon Pyo Choi; Jinhong Park; Ethan N. W. Howe; Jennifer R. Hiscock; Louise E. Karagiannidis; Igor Marques; Vítor Félix; Wan Namkung; Jonathan L. Sessler; Philip A. Gale; Injae Shin
Perturbations in cellular chloride concentrations can affect cellular pH and autophagy and lead to the onset of apoptosis. With this in mind, synthetic ion transporters have been used to disturb cellular ion homeostasis and thereby induce cell death; however, it is not clear whether synthetic ion transporters can also be used to disrupt autophagy. Here, we show that squaramide-based ion transporters enhance the transport of chloride anions in liposomal models and promote sodium chloride influx into the cytosol. Liposomal and cellular transport activity of the squaramides is shown to correlate with cell death activity, which is attributed to caspase-dependent apoptosis. One ion transporter was also shown to cause additional changes in lysosomal pH, which leads to impairment of lysosomal enzyme activity and disruption of autophagic processes. This disruption is independent of the initiation of apoptosis by the ion transporter. This study provides the first experimental evidence that synthetic ion transporters can disrupt both autophagy and induce apoptosis.
Angewandte Chemie | 2016
Timothy A. Barendt; Andrew Docker; Igor Marques; Vítor Félix; Paul D. Beer
Abstract The synthesis of the first halogen bonding [3]rotaxane host system containing a bis‐iodo triazolium‐bis‐naphthalene diimide four station axle component is reported. Proton NMR anion binding titration experiments revealed the halogen bonding rotaxane is selective for nitrate over the more basic acetate, hydrogen carbonate and dihydrogen phosphate oxoanions and chloride, and exhibits enhanced recognition of anions relative to a hydrogen bonding analogue. This elaborate interlocked anion receptor functions via a novel dynamic pincer mechanism where upon nitrate anion binding, both macrocycles shuttle from the naphthalene diimide stations at the periphery of the axle to the central halogen bonding iodo‐triazolium station anion recognition sites to form a unique 1:1 stoichiometric nitrate anion–rotaxane sandwich complex. Molecular dynamics simulations carried out on the nitrate and chloride halogen bonding [3]rotaxane complexes corroborate the 1H NMR anion binding results.