Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Igor Pottosin is active.

Publication


Featured researches published by Igor Pottosin.


Plant Physiology | 2007

Root Plasma Membrane Transporters Controlling K+/Na+ Homeostasis in Salt-Stressed Barley

Zhong-Hua Chen; Igor Pottosin; Tracey Ann Cuin; Anja T. Fuglsang; Mark Tester; Deepa Jha; Isaac Zepeda-Jazo; Meixue Zhou; Michael G. Palmgren; Ia Newman; Sergey Shabala

Plant salinity tolerance is a polygenic trait with contributions from genetic, developmental, and physiological interactions, in addition to interactions between the plant and its environment. In this study, we show that in salt-tolerant genotypes of barley (Hordeum vulgare), multiple mechanisms are well combined to withstand saline conditions. These mechanisms include: (1) better control of membrane voltage so retaining a more negative membrane potential; (2) intrinsically higher H+ pump activity; (3) better ability of root cells to pump Na+ from the cytosol to the external medium; and (4) higher sensitivity to supplemental Ca2+. At the same time, no significant difference was found between contrasting cultivars in their unidirectional 22Na+ influx or in the density and voltage dependence of depolarization-activated outward-rectifying K+ channels. Overall, our results are consistent with the idea of the cytosolic K+-to-Na+ ratio being a key determinant of plant salinity tolerance, and suggest multiple pathways of controlling that important feature in salt-tolerant plants.


Frontiers in Plant Science | 2011

Calcium efflux systems in stress signaling and adaptation in plants

Jayakumar Bose; Igor Pottosin; Stanislav S. Shabala; Michael G. Palmgren; Sergey Shabala

Transient cytosolic calcium ([Ca2+]cyt) elevation is an ubiquitous denominator of the signaling network when plants are exposed to literally every known abiotic and biotic stress. These stress-induced [Ca2+]cyt elevations vary in magnitude, frequency, and shape, depending on the severity of the stress as well the type of stress experienced. This creates a unique stress-specific calcium “signature” that is then decoded by signal transduction networks. While most published papers have been focused predominantly on the role of Ca2+ influx mechanisms to shaping [Ca2+]cyt signatures, restoration of the basal [Ca2+]cyt levels is impossible without both cytosolic Ca2+ buffering and efficient Ca2+ efflux mechanisms removing excess Ca2+ from cytosol, to reload Ca2+ stores and to terminate Ca2+ signaling. This is the topic of the current review. The molecular identity of two major types of Ca2+ efflux systems, Ca2+-ATPase pumps and Ca2+/H+ exchangers, is described, and their regulatory modes are analyzed in detail. The spatial and temporal organization of calcium signaling networks is described, and the importance of existence of intracellular calcium microdomains is discussed. Experimental evidence for the role of Ca2+ efflux systems in plant responses to a range of abiotic and biotic factors is summarized. Contribution of Ca2+-ATPase pumps and Ca2+/H+ exchangers in shaping [Ca2+]cyt signatures is then modeled by using a four-component model (plasma- and endo-membrane-based Ca2+-permeable channels and efflux systems) taking into account the cytosolic Ca2+ buffering. It is concluded that physiologically relevant variations in the activity of Ca2+-ATPase pumps and Ca2+/H+ exchangers are sufficient to fully describe all the reported experimental evidence and determine the shape of [Ca2+]cyt signatures in response to environmental stimuli, emphasizing the crucial role these active efflux systems play in plant adaptive responses to environment.


Plant Physiology | 2011

Polyamines Interact with Hydroxyl Radicals in Activating Ca2+ and K+ Transport across the Root Epidermal Plasma Membranes

Isaac Zepeda-Jazo; Ana María Velarde-Buendía; René Enríquez-Figueroa; Jayakumar Bose; Sergey Shabala; Jesús Muñiz-Murguía; Igor Pottosin

Reactive oxygen species (ROS) are integral components of the plant adaptive responses to environment. Importantly, ROS affect the intracellular Ca2+ dynamics by activating a range of nonselective Ca2+-permeable channels in plasma membrane (PM). Using patch-clamp and noninvasive microelectrode ion flux measuring techniques, we have characterized ionic currents and net K+ and Ca2+ fluxes induced by hydroxyl radicals (OH•) in pea (Pisum sativum) roots. OH•, but not hydrogen peroxide, activated a rapid Ca2+ efflux and a more slowly developing net Ca2+ influx concurrent with a net K+ efflux. In isolated protoplasts, OH• evoked a nonselective current, with a time course and a steady-state magnitude similar to those for a K+ efflux in intact roots. This current displayed a low ionic selectivity and was permeable to Ca2+. Active OH•-induced Ca2+ efflux in roots was suppressed by the PM Ca2+ pump inhibitors eosine yellow and erythrosine B. The cation channel blockers gadolinium, nifedipine, and verapamil and the anionic channel blockers 5-nitro-2(3-phenylpropylamino)-benzoate and niflumate inhibited OH•-induced ionic currents in root protoplasts and K+ efflux and Ca2+ influx in roots. Contrary to expectations, polyamines (PAs) did not inhibit the OH•-induced cation fluxes. The net OH•-induced Ca2+ efflux was largely prolonged in the presence of spermine, and all PAs tested (spermine, spermidine, and putrescine) accelerated and augmented the OH•-induced net K+ efflux from roots. The latter effect was also observed in patch-clamp experiments on root protoplasts. We conclude that PAs interact with ROS to alter intracellular Ca2+ homeostasis by modulating both Ca2+ influx and efflux transport systems at the root cell PM.


FEBS Letters | 2007

Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels

Sergey Shabala; Tracey Ann Cuin; Igor Pottosin

Despite numerous reports implicating polyamines in plant salinity responses, the specific ionic mechanisms of polyamine‐mediated adaptation to salt‐stress remain elusive. In this work, we show that micromolar concentrations of polyamines are efficient in preventing NaCl‐induced K+ efflux from the leaf mesophyll, and that this effect can be attributed to the inhibition of non‐selective cation channels in mesophyll. The inhibition by externally applied polyamines developed slowly over time, suggesting a cytosolic mode of action. Overall, we suggest that elevated levels of cellular polyamine may modulate the activity of plasma membrane ion channels, improving ionic relations and assisting in a plants adaptation to salinity.


The Journal of Membrane Biology | 1999

Inhibition of Vacuolar Ion Channels by Polyamines

Oxana Dobrovinskaya; Jesús Muñiz; Igor Pottosin

Abstract. In this work, direct effects of cytosolic polyamines on the two principle vacuolar ion channels were studied by means of patch-clamp technique. Fast and slow activating vacuolar channels were analyzed on membrane patches isolated from vacuoles of the red beet taproot. The potency of the fast and of the slow vacuolar channel blockage by polyamines decreased with a decrease of the polycation charge, spermine4+ > spermidine3+ > putrescine2+. In contrast to the inhibition of the fast vacuolar channel, the blockage of the slow vacuolar channel by polyamines displayed a pronounced voltage-dependence. Hence, in the presence of high concentration of polyamines the slow vacuolar channel was converted into a strong inward rectifier as evidenced by its unitary current-voltage characteristic. The blockage of the slow vacuolar channel by polyamines was relieved at a large depolarization, in line with the permeation of polyamines through this channel. The voltage-dependence of blockage was analyzed in terms of the conventional model, assuming a single binding site for polyamines within the channel pore. Taking advantage of a simple linear structure of naturally occurring polyamines, conclusions on a possible architecture of the slow vacuolar channel pore were drawn. The role of common polyamines in regulation of vacuolar ion transport was discussed.


Journal of Experimental Botany | 2014

Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses

Igor Pottosin; Ana María Velarde-Buendía; Jayakumar Bose; Isaac Zepeda-Jazo; Sergey Shabala; Oxana Dobrovinskaya

Many stresses are associated with increased accumulation of reactive oxygen species (ROS) and polyamines (PAs). PAs act as ROS scavengers, but export of putrescine and/or PAs to the apoplast and their catabolization by amine oxidases gives rise to H2O2 and other ROS, including hydroxyl radicals ((•)OH). PA catabolization-based signalling in apoplast is implemented in plant development and programmed cell death and in plant responses to a variety of biotic and abiotic stresses. Central to ROS signalling is the induction of Ca(2+) influx across the plasma membrane. Different ion conductances may be activated, depending on ROS, plant species, and tissue. Both H2O2 and (•)OH can activate hyperpolarization-activated Ca(2+)-permeable channels. (•)OH is also able to activate both outward K(+) current and weakly voltage-dependent conductance (ROSIC), with a variable cation-to-anion selectivity and sensitive to a variety of cation and anion channel blockers. Unexpectedly, PAs potentiated (•)OH-induced K(+) efflux in vivo, as well as ROSIC in isolated protoplasts. This synergistic effect is restricted to the mature root zone and is more pronounced in salt-sensitive cultivars compared with salt-tolerant ones. ROS and PAs suppress the activity of some constitutively expressed K(+) and non-selective cation channels. In addition, both (•)OH and PAs activate plasma membrane Ca(2+)-ATPase and affect H(+) pumping. Overall, (•)OH and PAs may provoke a substantial remodelling of cation and anion conductance at the plasma membrane and affect Ca(2+) signalling.


Plant Physiology | 2013

Reduced Tonoplast Fast-Activating and Slow-Activating Channel Activity Is Essential for Conferring Salinity Tolerance in a Facultative Halophyte, Quinoa

Edgar Bonales-Alatorre; Sergey Shabala; Zhong-Hua Chen; Igor Pottosin

The negative control of SV and FV tonoplast channel activity in quinoa leaves reduces Na+ leak. This improves the efficiency of Na+ sequestration in leaf vacuoles, thus enabling optimal photosynthetic performance and conferring salinity tolerance in this halophyte species. Halophyte species implement a “salt-including” strategy, sequestering significant amounts of Na+ to cell vacuoles. This requires a reduction of passive Na+ leak from the vacuole. In this work, we used quinoa (Chenopodium quinoa) to investigate the ability of halophytes to regulate Na+-permeable slow-activating (SV) and fast-activating (FV) tonoplast channels, linking it with Na+ accumulation in mesophyll cells and salt bladders as well as leaf photosynthetic efficiency under salt stress. Our data indicate that young leaves rely on Na+ exclusion to salt bladders, whereas old ones, possessing far fewer salt bladders, depend almost exclusively on Na+ sequestration to mesophyll vacuoles. Moreover, although old leaves accumulate more Na+, this does not compromise their leaf photochemistry. FV and SV channels are slightly more permeable for K+ than for Na+, and vacuoles in young leaves express less FV current and with a density unchanged in plants subjected to high (400 mm NaCl) salinity. In old leaves, with an intrinsically lower density of the FV current, FV channel density decreases about 2-fold in plants grown under high salinity. In contrast, intrinsic activity of SV channels in vacuoles from young leaves is unchanged under salt stress. In vacuoles of old leaves, however, it is 2- and 7-fold lower in older compared with young leaves in control- and salt-grown plants, respectively. We conclude that the negative control of SV and FV tonoplast channel activity in old leaves reduces Na+ leak, thus enabling efficient sequestration of Na+ to their vacuoles. This enables optimal photosynthetic performance, conferring salinity tolerance in quinoa species.


Frontiers in Plant Science | 2014

Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling.

Igor Pottosin; Sergey Shabala

Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm4+ > Spd3+ > Put2+. On the contrary, effects of polyamines on the plasma membrane (PM) cation and K+-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H+ pumps and Ca2+ pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca2+ influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment.


Plant Physiology and Biochemistry | 2012

Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K(+) efflux by polyamines.

Ana María Velarde-Buendía; Sergey Shabala; Milena Cvikrová; Oxana Dobrovinskaya; Igor Pottosin

Generation of high levels of polyamines and reactive oxygen species (ROS) is common under stress conditions. Our recent study on a salt-sensitive pea species revealed an interaction between natural polyamines and hydroxyl radicals in inducing non-selective conductance and stimulating Ca(2+)-ATPase pumps at the root plasma membrane (I. Zepeda-Jazo, A.M. Velarde-Buendía, R. Enríquez-Figueroa, B. Jayakumar, S. Shabala, J. Muñiz, I. Pottosin, Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes, Plant Phys. 157 (2011) 1-14). In this work, we extended that study to see if interaction between polyamines and ROS may determine the extent of genotypic variation in salinity tolerance. This work was conducted using barley genotypes contrasting in salinity tolerance. Similar to our findings in pea, application of hydroxyl radicals-generating Cu(2+)/ascorbate mixture induced transient Ca(2+) and K(+) fluxes in barley roots. Putrescine and spermine alone induced only transient Ca(2+) efflux and negligible K(+) flux. However, both putrescine and spermine strongly potentiated hydroxyl radicals-induced K(+) efflux and respective non-selective current. This synergistic effect was much more pronounced in a salt-sensitive cultivar Franklin as compared to a salt-tolerant TX9425. As retention of K(+) under salt stress is a key determinant of salinity tolerance in barley, we suggest that the alteration of cytosolic K(+) homeostasis, caused by interaction between polyamines and ROS, may have a substantial contribution to genetic variability in salt sensitivity in this species.


The Journal of Membrane Biology | 2001

Conduction of Monovalent and Divalent Cations in the Slow Vacuolar Channel

Igor Pottosin; Oxana Dobrovinskaya; Jesús Muñiz

Abstract. The conduction properties of individual physiologically important cations Na+, K+, Mg2+, and Ca2+ were determined in the slowly activating (SV) channel of sugar beet vacuoles. Current-voltage relationships of the open channel were measured on excised tonoplast patches in a continuous manner by applying a ±140 mV ramp-wave protocol. Applying KCl gradients of either direction across the patch we have determined that the relative Cl− to K+ permeability was ≤1%. Symmetrical increase of the concentration of tested cation caused an increase of the single channel conductance followed by saturation. Fitting of binding isotherms at zero voltage to the Michaelis-Menten equation resulted in values of maximal conductance of 300, 385, 18, and 13 pS, and of apparent dissociation constants of 64, 103, 0.04, and 0.08 mm for Na+, K+, Mg2+, and Ca2+, respectively. Deviations from the single-ion occupancy mechanism are documented, and alternative models of permeation are discussed. The magnitude of currents carried by divalent cations at low concentrations can be explained by an unrealistically wide (∼140 Å) radius of the pore entrance. We propose instead a fixed negative charge in the pore vestibules, which concentrates the cations in their proximity. The conduction properties of the SV channel are compared with reported characteristics of voltage-dependent Ca2+-permeable channels, and consequences for a possible reduction of postulated multiplicity of Ca2+ pathways across the tonoplast are drawn.

Collaboration


Dive into the Igor Pottosin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge