Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oxana Dobrovinskaya is active.

Publication


Featured researches published by Oxana Dobrovinskaya.


The Journal of Membrane Biology | 1999

Inhibition of Vacuolar Ion Channels by Polyamines

Oxana Dobrovinskaya; Jesús Muñiz; Igor Pottosin

Abstract. In this work, direct effects of cytosolic polyamines on the two principle vacuolar ion channels were studied by means of patch-clamp technique. Fast and slow activating vacuolar channels were analyzed on membrane patches isolated from vacuoles of the red beet taproot. The potency of the fast and of the slow vacuolar channel blockage by polyamines decreased with a decrease of the polycation charge, spermine4+ > spermidine3+ > putrescine2+. In contrast to the inhibition of the fast vacuolar channel, the blockage of the slow vacuolar channel by polyamines displayed a pronounced voltage-dependence. Hence, in the presence of high concentration of polyamines the slow vacuolar channel was converted into a strong inward rectifier as evidenced by its unitary current-voltage characteristic. The blockage of the slow vacuolar channel by polyamines was relieved at a large depolarization, in line with the permeation of polyamines through this channel. The voltage-dependence of blockage was analyzed in terms of the conventional model, assuming a single binding site for polyamines within the channel pore. Taking advantage of a simple linear structure of naturally occurring polyamines, conclusions on a possible architecture of the slow vacuolar channel pore were drawn. The role of common polyamines in regulation of vacuolar ion transport was discussed.


Journal of Experimental Botany | 2014

Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses

Igor Pottosin; Ana María Velarde-Buendía; Jayakumar Bose; Isaac Zepeda-Jazo; Sergey Shabala; Oxana Dobrovinskaya

Many stresses are associated with increased accumulation of reactive oxygen species (ROS) and polyamines (PAs). PAs act as ROS scavengers, but export of putrescine and/or PAs to the apoplast and their catabolization by amine oxidases gives rise to H2O2 and other ROS, including hydroxyl radicals ((•)OH). PA catabolization-based signalling in apoplast is implemented in plant development and programmed cell death and in plant responses to a variety of biotic and abiotic stresses. Central to ROS signalling is the induction of Ca(2+) influx across the plasma membrane. Different ion conductances may be activated, depending on ROS, plant species, and tissue. Both H2O2 and (•)OH can activate hyperpolarization-activated Ca(2+)-permeable channels. (•)OH is also able to activate both outward K(+) current and weakly voltage-dependent conductance (ROSIC), with a variable cation-to-anion selectivity and sensitive to a variety of cation and anion channel blockers. Unexpectedly, PAs potentiated (•)OH-induced K(+) efflux in vivo, as well as ROSIC in isolated protoplasts. This synergistic effect is restricted to the mature root zone and is more pronounced in salt-sensitive cultivars compared with salt-tolerant ones. ROS and PAs suppress the activity of some constitutively expressed K(+) and non-selective cation channels. In addition, both (•)OH and PAs activate plasma membrane Ca(2+)-ATPase and affect H(+) pumping. Overall, (•)OH and PAs may provoke a substantial remodelling of cation and anion conductance at the plasma membrane and affect Ca(2+) signalling.


Plant Physiology and Biochemistry | 2012

Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K(+) efflux by polyamines.

Ana María Velarde-Buendía; Sergey Shabala; Milena Cvikrová; Oxana Dobrovinskaya; Igor Pottosin

Generation of high levels of polyamines and reactive oxygen species (ROS) is common under stress conditions. Our recent study on a salt-sensitive pea species revealed an interaction between natural polyamines and hydroxyl radicals in inducing non-selective conductance and stimulating Ca(2+)-ATPase pumps at the root plasma membrane (I. Zepeda-Jazo, A.M. Velarde-Buendía, R. Enríquez-Figueroa, B. Jayakumar, S. Shabala, J. Muñiz, I. Pottosin, Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes, Plant Phys. 157 (2011) 1-14). In this work, we extended that study to see if interaction between polyamines and ROS may determine the extent of genotypic variation in salinity tolerance. This work was conducted using barley genotypes contrasting in salinity tolerance. Similar to our findings in pea, application of hydroxyl radicals-generating Cu(2+)/ascorbate mixture induced transient Ca(2+) and K(+) fluxes in barley roots. Putrescine and spermine alone induced only transient Ca(2+) efflux and negligible K(+) flux. However, both putrescine and spermine strongly potentiated hydroxyl radicals-induced K(+) efflux and respective non-selective current. This synergistic effect was much more pronounced in a salt-sensitive cultivar Franklin as compared to a salt-tolerant TX9425. As retention of K(+) under salt stress is a key determinant of salinity tolerance in barley, we suggest that the alteration of cytosolic K(+) homeostasis, caused by interaction between polyamines and ROS, may have a substantial contribution to genetic variability in salt sensitivity in this species.


The Journal of Membrane Biology | 2001

Conduction of Monovalent and Divalent Cations in the Slow Vacuolar Channel

Igor Pottosin; Oxana Dobrovinskaya; Jesús Muñiz

Abstract. The conduction properties of individual physiologically important cations Na+, K+, Mg2+, and Ca2+ were determined in the slowly activating (SV) channel of sugar beet vacuoles. Current-voltage relationships of the open channel were measured on excised tonoplast patches in a continuous manner by applying a ±140 mV ramp-wave protocol. Applying KCl gradients of either direction across the patch we have determined that the relative Cl− to K+ permeability was ≤1%. Symmetrical increase of the concentration of tested cation caused an increase of the single channel conductance followed by saturation. Fitting of binding isotherms at zero voltage to the Michaelis-Menten equation resulted in values of maximal conductance of 300, 385, 18, and 13 pS, and of apparent dissociation constants of 64, 103, 0.04, and 0.08 mm for Na+, K+, Mg2+, and Ca2+, respectively. Deviations from the single-ion occupancy mechanism are documented, and alternative models of permeation are discussed. The magnitude of currents carried by divalent cations at low concentrations can be explained by an unrealistically wide (∼140 Å) radius of the pore entrance. We propose instead a fixed negative charge in the pore vestibules, which concentrates the cations in their proximity. The conduction properties of the SV channel are compared with reported characteristics of voltage-dependent Ca2+-permeable channels, and consequences for a possible reduction of postulated multiplicity of Ca2+ pathways across the tonoplast are drawn.


Planta | 2004

Mechanism of luminal Ca2+ and Mg2+ action on the vacuolar slowly activating channels

Igor Pottosin; Manuel Martínez-Estévez; Oxana Dobrovinskaya; Jesús Muñiz; Gerald Schönknecht

The non-selective slow vacuolar (SV) channel can dominate tonoplast conductance, making it necessary to tightly control its activity. Applying the patch-clamp technique to vacuoles from sugar beet (Beta vulgaris L.) taproots we studied the effect of divalent cations on the vacuolar side of the SV channel. Our results show that the SV channel has two independent binding sites for vacuolar divalent cations, (i) a less selective one, inside the channel pore, binding to which impedes channel conductance, and (ii) a Ca2+-selective one outside the membrane-spanning part of the channel protein, binding to which stabilizes the channel’s closed conformations. Vacuolar Ca2+ and Mg2+ almost indiscriminately blocked ion fluxes through the open channel pore, decreasing measured single-channel current amplitudes. This low-affinity block displays marked voltage dependence, characteristic of a ‘permeable blocker’. Vacuolar Ca2+—with a much higher affinity than Mg2+—slows down SV channel activation and shifts the voltage dependence to more (cytosol) positive potentials. A quantitative analysis results in a model that exactly describes the Ca2+-specific effects on the SV channel activation kinetics and voltage gating. According to this model, multiple (approximately three) divalent cations bind with a high affinity at the luminal interface of the membrane to the channel protein, favoring the occupancy of one of the SV channel’s closed states (C2). Transition to another closed state (C1) diminishes the effective number of bound cations, probably due to mutual repulsion, and channel opening is accompanied by a decrease of binding affinity. Hence, the open state (O) is destabilized with respect to the two closed states, C1 and C2, in the presence of Ca2+ at the vacuolar side. The specificity for Ca2+ compared to Mg2+ is explained in terms of different binding affinities for these cations. In this study we demonstrate that vacuolar Ca2+ is a crucial regulator to restrict SV channel activity to a physiologically meaningful range, which is less than 0.1% of maximum SV channel activity.


European Biophysics Journal | 1999

Asymmetric block of the plant vacuolar Ca(2+)-permeable channel by organic cations.

Oxana Dobrovinskaya; Jesús Muñiz; Igor Pottosin

Abstract In this work we have analysed the voltage-dependent block of the slow activating channel from red beet vacuoles by Tris, quaternary ammonium ions and the natural polyamines putrescine, spermidine and spermine. All these organic cations when applied from the cytosolic side blocked the channel by binding apparently deep (zδ values in the range of 0.65–1.35) within the pore. Tetraethylammonium ion did not pass the selectivity filter, whereas the cations with a smaller cross-section and Tris could pass across the entire pore, as evidenced by a relief of block at high positive voltages. Voltage dependence of the establishment of block from cytosolic side and of its relief was anomalously strong in the sense that the total charge moved across the pore for all blockers tested, with a notable exception of spermine, was in excess of their actual valence. This behaviour is consistent with the existence of multiple binding sites within a long pore, their simultaneous occupancy and interaction between different ions. In contrast, binding of blockers from the vacuolar (lumenal) side appears to follow a single-ion handling rule, with a common binding site for all amines located at approximately 30% of the electrical distance from the lumenal side.


Journal of Plant Physiology | 2014

Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport.

Igor Pottosin; Oxana Dobrovinskaya

Both in vacuolar and plasma membranes, in addition to truly K(+)-selective channels there is a variety of non-selective channels, which conduct K(+) and other ions with little preference. Many non-selective channels in the plasma membrane are active at depolarized potentials, thus, contributing to K(+) efflux rather than to K(+) uptake. They may play important roles in xylem loading or contribute to a K(+) leak, induced by salt or oxidative stress. Here, three currents, expressed in root cells, are considered: voltage-insensitive cation current, non-selective outwardly rectifying current, and low-selective conductance, activated by reactive oxygen species. The latter two do not only poorly discriminate between different cations (like K(+)vs Na(+)), but also conduct anions. Such solute channels may mediate massive electroneutral transport of salts and might be involved in osmotic adjustment or volume decrease, associated with cell death. In the tonoplast two major currents are mediated by SV (slow) and FV (fast) vacuolar channels, respectively, which are virtually impermeable for anions. SV channels conduct mono- and divalent cations indiscriminately and are activated by high cytosolic Ca(2+) and depolarized voltages. FV channels are inhibited by micromolar cytosolic Ca(2+), Mg(2+), and polyamines, and conduct a variety of monovalent cations, including K(+). Strikingly, both SV and FV channels sense the K(+) content of vacuoles, which modulates their voltage dependence, and in case of SV, also alleviates channels inhibition by luminal Ca(2+). Therefore, SV and FV channels may operate as K(+)-sensing valves, controlling K(+) distribution between the vacuole and the cytosol.


American Journal of Physiology-cell Physiology | 2009

Kbg and Kv1.3 channels mediate potassium efflux in the early phase of apoptosis in Jurkat T lymphocytes

Georgina Valencia-Cruz; Lana Shabala; Iván Delgado-Enciso; Sergey Shabala; Edgar Bonales-Alatorre; Igor Pottosin; Oxana Dobrovinskaya

Microelectrode ion flux estimation (MIFE) and patch-clamp techniques were combined for noninvasive K(+) flux measurements and recording of activities of the dominant K(+) channels in the early phases of apoptosis in Jurkat cells. Staurosporine (STS, 1 microM) evoked rapid (peaking around 15 min) transient K(+) efflux, which then gradually decreased. This transient K(+) efflux occurred concurrently with the transient increase of the K(+) background (K(bg)) TWIK-related spinal cord K(+) channel-like current density, followed by a drastic decrease and concomitant membrane depolarization. The Kv1.3 current density remained almost constant. Kv1.3 activation was not altered by STS, whereas the inactivation was shifted to more positive potentials. Contribution of K(bg) and Kv1.3 channels to the transient and posttransient STS-induced K(+) efflux components, respectively, was confirmed by the effects of bupivacaine, predominantly blocking K(bg) current, and the Kv1.3-specific blocker margatoxin. Channel-mediated K(+) efflux provoked a substantial cellular shrinkage and affected the activation of caspases.


Journal of Experimental Botany | 2008

Homeostatic control of slow vacuolar channels by luminal cations and evaluation of the channel-mediated tonoplast Ca2+ fluxes in situ

V. Pérez; T. Wherrett; Sergey Shabala; Jesús Muñiz; Oxana Dobrovinskaya; Igor Pottosin

Ca2+, Mg2+, and K+ activities in red beet (Beta vulgaris L.) vacuoles were evaluated using conventional ion-selective microelectrodes and, in the case of Ca2+, by non-invasive ion flux measurements (MIFE) as well. The mean vacuolar Ca2+ activity was ∼0.2 mM. Modulation of the slow vacuolar (SV) channel voltage dependence by Ca2+ in the absence and presence of other cations at their physiological concentrations was studied by patch-clamp in excised tonoplast patches. Lowering pH at the vacuolar side from 7.5 to 5.5 (at zero vacuolar Ca2+) did not affect the channel voltage dependence, but abolished sensitivity to luminal Ca2+ within a physiological range of concentrations (0.1–1.0 mM). Aggregation of the physiological vacuolar Na+ (60 mM) and Mg2+ (8 mM) concentrations also results in the SV channel becoming almost insensitive to vacuolar Ca2+ variation in a range from nanomoles to 0.1 mM. At physiological cation concentrations at the vacuolar side, cytosolic Ca2+ activates the SV channel in a voltage-independent manner with Kd=0.7–1.5 μM. Comparison of the vacuolar Ca2+ fluxes measured by both the MIFE technique and from estimating the SV channel activity in attached patches, suggests that, at resting membrane potentials, even at elevated (20 μM) cytosolic Ca2+, only 0.5% of SV channels are open. This mediates a Ca2+ release of only a few pA per vacuole (∼0.1 pA per single SV channel). Overall, our data suggest that the release of Ca2+ through SV channels makes little contribution to a global cytosolic Ca2+ signal.


Biophysical Journal | 1999

Cooperative Block of the Plant Endomembrane Ion Channel by Ruthenium Red

Igor Pottosin; Oxana Dobrovinskaya; Jesús Muñiz

Effects of ruthenium red (RR) on the slow Ca(2+)-activated Ca(2+)-permeable vacuolar channel have been studied by patch-clamp technique. Applied to the cytosolic side of isolated membrane patches, RR at concentrations of 0.1-5 microM produced two distinct effects on single channel kinetics, long lasting closures and a flickering block of the open state. The first effect was largely irreversible, whereas the second one could be washed out. The extent of flickering block steeply increased (zdelta = approximately 1.35) with the increase of cytosol-positive voltage, dragging RR into the channel pore. At least two RR ions are involved in the block according to Hill coefficient n = approximately 1.30 for the dose response curves. The on-rate rate of the drug binding linearly depended on the RR concentration, implying that one RR ion already plugged the pore. The blocked state was further stabilized by binding of the second RR. This stabilization was in excess of that predicted by independent binding as the dependence of unblocking rate on RR concentration revealed. A cooperative model was therefore employed to describe the kinetic behavior of RR binding. At zero voltage the half-blocking RR concentration of 36 microM and the bimolecular on-rate constant of 1.8 x 10(8) M(-1) s(-1) were estimated.

Collaboration


Dive into the Oxana Dobrovinskaya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge