Igor Rahinov
Open University of Israel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Igor Rahinov.
Journal of Chemical Physics | 2008
Igor Rahinov; Russell Cooper; Cheng Yuan; Xueming Yang; Daniel J. Auerbach; Alec M. Wodtke
We report high resolution state-to-state time-of-flight (TOF) measurements for scattering of HCl(v=2, J=1) from a Au(111) single crystal surface for both vibrationally elastic (v=2-->2) as well as inelastic (v=2-->1) channels at seven incidence energies between 0.28 and 1.27 eV. The dependences of the TOF results on final HCl rotational state and surface temperature are also reported. The translational energy transferred to the surface depends linearly on incidence energy and is close to the single surface-atom impulse (Baule) limit over the entire range of incidence energies studied. The probability of vibrational relaxation is also large. For molecules that relax from v=2 to v=1, the fraction of vibrational energy that is transferred to the surface is approximately 74%. We discuss these observations in terms of an impulse approximation as well as the possible role of translational and vibrational excitations of electron-hole pairs in the solid.
Journal of Vacuum Science and Technology | 2009
Russell Cooper; Igor Rahinov; Cheng Yuan; Xueming Yang; Daniel J. Auerbach; Alec M. Wodtke
The authors report high resolution state resolved measurements of the translational inelasticity of HCl(v=0→0,J=0→4) colliding with a Au(111) surface at near normal incidence in the energy range of 0.28–1.27eV. The translational inelasticity is large and indistinguishable from previous measurements for the HCl(v=2→2,J=1→5) channel. They discuss these observations in terms of an impulse approximation as well as the possible role of translational excitation of electron-hole pairs in the solid.
Angewandte Chemie | 2012
Russell Cooper; Christof Bartels; Alexander Kandratsenka; Igor Rahinov; Neil Shenvi; Kai Golibrzuch; Zhisheng Li; Daniel J. Auerbach; John C. Tully; Alec M. Wodtke
Surface phenomena: measurements of absolute probabilities are reported for the vibrational excitation of NO(v=0→1,2) molecules scattered from a Au(111) surface. These measurements were quantitatively compared to calculations based on ab initio theoretical approaches to electronically nonadiabatic molecule-surface interactions. Good agreement was found between theory and experiment (see picture; T(s) =surface temperature, P=excitation probability, and E=incidence energy of translation).
Journal of Chemical Physics | 2012
Russell Cooper; Zhisheng Li; Kai Golibrzuch; Christof Bartels; Igor Rahinov; Daniel J. Auerbach; Alec M. Wodtke
We describe a method to obtain absolute vibrational excitation probabilities of molecules scattering from a surface based on measurements of the rotational state, scattering angle, and temporal distributions of the scattered molecules and apply this method to the vibrational excitation of NO scattering from Au(111). We report the absolute excitation probabilities to the v = 1 and v = 2 vibrational states, rotational excitation distributions, and final scattering angle distributions for a wide range of incidence energies and surface temperatures. In addition to demonstrating the methodology for obtaining absolute scattering probabilities, these results provide an excellent benchmark for theoretical calculations of molecule-surface scattering.
Journal of Physical Chemistry A | 2013
Kai Golibrzuch; Pranav R. Shirhatti; Jan Altschäffel; Igor Rahinov; Daniel J. Auerbach; Alec M. Wodtke; Christof Bartels
Translational motion is believed to be a spectator degree of freedom in electronically nonadiabatic vibrational energy transfer between molecules and metal surfaces, but the experimental evidence available to support this view is limited. In this work, we have experimentally determined the translational inelasticity in collisions of NO molecules with a single-crystal Au(111) surface-a system with strong electronic nonadiabaticity. State-to-state molecular beam surface scattering was combined with an IR-UV double resonance scheme to obtain high-resolution time-of-flight data. The measurements include vibrationally elastic collisions (v = 3→3, 2→2) as well as collisions where one or two quanta of molecular vibration are excited (2→3, 2→4) or de-excited (2→1, 3→2, 3→1). In addition, we have carried out comprehensive measurements of the effects of rotational excitation on the translational energy of the scattered molecules. We find that under all conditions of this work, the NO molecules lose a large fraction (∼0.45) of their incidence translational energy to the surface. Those molecules that undergo vibrational excitation (relaxation) during the collision recoil slightly slower (faster) than vibrationally elastically scattered molecules. The amount of translational energy change depends on the surface temperature. The translation-to-rotation coupling, which is well-known for v = 0→0 collisions, is found to be significantly weaker for vibrationally inelastic than elastic channels. Our results clearly show that the spectator view of the translational motion in electronically nonadiabatic vibrational energy transfer between NO and Au(111) is only approximately correct.
Journal of Chemical Physics | 2014
Kai Golibrzuch; Pranav R. Shirhatti; Igor Rahinov; Alexander Kandratsenka; Daniel J. Auerbach; Alec M. Wodtke; Christof Bartels
We present a combined experimental and theoretical study of NO(v = 3 → 3, 2, 1) scattering from a Au(111) surface at incidence translational energies ranging from 0.1 to 1.2 eV. Experimentally, molecular beam-surface scattering is combined with vibrational overtone pumping and quantum-state selective detection of the recoiling molecules. Theoretically, we employ a recently developed first-principles approach, which employs an Independent Electron Surface Hopping (IESH) algorithm to model the nonadiabatic dynamics on a Newns-Anderson Hamiltonian derived from density functional theory. This approach has been successful when compared to previously reported NO/Au scattering data. The experiments presented here show that vibrational relaxation probabilities increase with incidence energy of translation. The theoretical simulations incorrectly predict high relaxation probabilities at low incidence translational energy. We show that this behavior originates from trajectories exhibiting multiple bounces at the surface, associated with deeper penetration and favored (N-down) molecular orientation, resulting in a higher average number of electronic hops and thus stronger vibrational relaxation. The experimentally observed narrow angular distributions suggest that mainly single-bounce collisions are important. Restricting the simulations by selecting only single-bounce trajectories improves agreement with experiment. The multiple bounce artifacts discovered in this work are also present in simulations employing electronic friction and even for electronically adiabatic simulations, meaning they are not a direct result of the IESH algorithm. This work demonstrates how even subtle errors in the adiabatic interaction potential, especially those that influence the interaction time of the molecule with the surface, can lead to an incorrect description of electronically nonadiabatic vibrational energy transfer in molecule-surface collisions.
Journal of Physical Chemistry A | 2013
Kai Golibrzuch; Alexander Kandratsenka; Igor Rahinov; Russell Cooper; Daniel J. Auerbach; Alec M. Wodtke; Christof Bartels
We measured absolute probabilities for vibrational excitation of NO(v = 0) molecules in collisions with a Au(111) surface at an incidence energy of translation of 0.4 eV and surface temperatures between 300 and 1100 K. In addition to previously reported excitation to v = 1 and v = 2, we observed excitation to v = 3. The excitation probabilities exhibit an Arrhenius dependence on surface temperature, indicating that the dominant excitation mechanism is nonadiabatic coupling to electron-hole pairs. The experimental data are analyzed in terms of a recently introduced kinetic model, which was extended to include four vibrational states. We describe a subpopulation decomposition of the kinetic model, which allows us to examine vibrational population transfer pathways. The analysis indicates that sequential pathways (v = 0 → 1 → 2 and v = 0 → 1 → 2 → 3) alone cannot adequately describe production of v = 2 or 3. In addition, we performed first-principles molecular dynamics calculations that incorporate electronically nonadiabatic dynamics via an independent electron surface hopping (IESH) algorithm, which requires as input an ab initio potential energy hypersurface (PES) and nonadiabatic coupling matrix elements, both obtained from density functional theory (DFT). While the IESH-based simulations reproduce the v = 1 data well, they slightly underestimate the excitation probabilities for v = 2, and they significantly underestimate those for v = 3. Furthermore, this implementation of IESH appears to overestimate the importance of sequential energy transfer pathways. We make several suggestions concerning ways to improve this IESH-based model.
Chemical Science | 2010
Russell Cooper; Igor Rahinov; Zhisheng Li; Daniel Matsiev; Daniel J. Auerbach; Alec M. Wodtke
Vibrational overtone excitation is, in general, inefficiently stimulated by photons, but can under some circumstances be efficiently stimulated by electrons. Here, we demonstrate electron mediated vibrational overtone excitation in molecular collisions with a metal surface. Specifically, we report absolute vibrational excitation probabilities to ν = 1 and 2 for collisions of NO(ν = 0) with a Au(111) surface as a function of surface temperature from 300 to 985 K. In all cases, the observed populations of vibrationally excited NO are near those expected for complete thermalization with the surface, despite the fact that the scattering occurs through a direct “single bounce” mechanism of sub-ps duration. We present a state-to-state kinetic model, which accurately describes the case of near complete thermalization (a regime we call the strong coupling case) and use this model to extract state-to-state rate constants. This analysis unambiguously shows that direct vibrational overtone excitation dominates the production of ν = 2 and that, within the context of our model, the intrinsic strength of the overtone transition is of the same order as the single quantum transition, suggesting a possible way to circumvent optical selection rules in vibrational pumping of molecules. This result also suggests that previous measurements of vibrational relaxation of highly vibrationally excited NO exhibiting highly efficient multi-quantum jumps (Δν ∼ −8) are mechanistically similar to vibrational excitation of NO(ν = 0).
Chemical Physics Letters | 2002
Igor Rahinov; N. Ditzian; Vladimir A. Lozovsky; Sergey Cheskis
Abstract Absorption spectra of the CN radical have been measured by Intracavity Laser Absorption Spectroscopy in hydrocarbon flames doped with minor amount of nitrogen oxide. Spectra of the CN red band system ( A 2 Π← X 2 Σ + ) have been observed in the spectral range of 642 nm along with lines of other species from flame: NH2, HNO, 1 CH 2 , and NO2. The sensitivity of about 2.3×10 10 cm −3 at 1700 or ∼100 ppb at 30 Torr at 1700 K has been demonstrated.
Physical Chemistry Chemical Physics | 2014
Kai Golibrzuch; Pranav R. Shirhatti; Igor Rahinov; Daniel J. Auerbach; Alec M. Wodtke; Christof Bartels
We report measurements of translational energy distributions when scattering NO(vi = 3, Ji = 1.5) from a Au(111) surface into vibrational states vf = 1, 2, 3 and rotational states up to Jf = 32.5 for various incidence energies ranging from 0.11 eV to 0.98 eV. We observed that the vibration-to-translation as well as the translation-to-rotation coupling depend on translational incidence energy, EI. The vibration-to-translation coupling, i.e. the additional recoil energy observed for vibrationally inelastic (v = 3 → 2, 1) scattering, is seen to increase with increasing EI. The final translational energy decreases approximately linearly with increasing rotational excitation. At incidence energies EI > 0.5 eV, the slopes of these dependencies are constant and identical for the three vibrational channels. At lower incidence energies, the slopes gradually approach zero for the vibrationally elastic channel while they exhibit more abrupt transitions for the vibrationally inelastic channels. We discuss possible mechanisms for both effects within the context of nonadiabatic electron-hole pair mediated energy transfer and orientation effects.