Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Il Keun Kwon is active.

Publication


Featured researches published by Il Keun Kwon.


Journal of Controlled Release | 2012

Analysis on the current status of targeted drug delivery to tumors

Il Keun Kwon; Sang Cheon Lee; Bumsoo Han; Kinam Park

Targeted drug delivery to tumor sites is one of the ultimate goals in drug delivery. Recent progress in nanoparticle engineering has certainly improved drug targeting, but the results are not as good as expected. This is largely due to the fact that nanoparticles, regardless of how advanced they are, find the target as a result of blood circulation, like the conventional drug delivery systems do. Currently, the nanoparticle-based drug delivery to the target tumor tissues is based on wrong assumptions that most of the nanoparticles, either PEGylated or not, reach the target by the enhanced permeation and retention (EPR) effect. Studies have shown that so-called targeting moieties, i.e., antibodies or ligands, on the nanoparticle surface do not really improve delivery to target tumors. Targeted drug delivery to tumor sites is associated with highly complex biological, mechanical, chemical and transport phenomena, of which characteristics vary spatiotemporally. Yet, most of the efforts have been focused on design and surface manipulation of the drug carrying nanoparticles with relatively little attention to other aspects. This article examines the current misunderstandings and the main difficulties in targeted drug delivery.


Biomaterials | 2011

The effect of immobilization of heparin and bone morphogenic protein-2 (BMP-2) to titanium surfaces on inflammation and osteoblast function

Sung Eun Kim; Sang-Hun Song; Young Pil Yun; Byung-Joon Choi; Il Keun Kwon; Min Soo Bae; Ho-Jin Moon; Yong-Dae Kwon

The aim of this study was to investigate biologic function of bone morphorgenic protein-2 (rhBMP-2) immobilized on the heparin-grafted Ti surface. Ti surfaces were first modified by 3-aminopropyltriethoxysilane (ATPES), followed by grafting of heparin. BMP-2 was then immobilized on the heparin-grafted Ti surfaces. Pristine Ti and functionalized Ti surfaces were characterized by X-ray photoelectron spectroscopy (XPS), measurement of water contact angles, and protein adsorption. The biological activity of MG-63 cells on pristine and functionalized Ti surfaces was investigated by cell proliferation assays, measurement of alkaline phosphate (ALP) activity, and determination of calcium deposition. Anti-inflammatory effects were assessed by RT-PCR to measure the transcript levels of IL-6 and TNF-α. XPS revealed that heparin and BMP-2 were successfully grafted and immobilized on the Ti surfaces, respectively. In addition, Ti surfaces with BMP-2 immobilized were more hydrophilic than pristine Ti. Furthermore, BMP-2 immobilized Ti promoted significantly higher ALP activity and calcium deposition by MG-63 cells than pristine Ti. The inflammatory response was also decreased when cells were grown on heparin-grafted, BMP-2-immobilized Ti surfaces. The results of this study suggest that by grafting heparin and immobilizing BMP-2 on Ti surfaces, inflammation can be inhibited and osteoblast function promoted.


Biomedical Materials | 2009

Electrospun gelatin/polyurethane blended nanofibers for wound healing

Sung Eun Kim; Dong Nyoung Heo; Jung Bok Lee; Jong Ryul Kim; Sang Hyuk Park; Seong Ho Jeon; Il Keun Kwon

In this study, we prepared a blended nanofiber scaffold using synthetic and natural polymers, polyurethane (PU) and gelatin respectively, using the electrospinning method to prepare a material for wound dressing. In order to confirm the properties of this gelatin/PU blended nanofiber scaffold, we performed scanning electron microscopy, atomic force microscopy, attenuated total reflectance Fourier-transform infrared spectroscopy, thermal gravimetric analysis, contact angle, water uptake, mechanical property, recovery, and degradation tests, and cellular response. The results obtained indicate that the mean diameter of these nanofibers was uniformly electrospun and ranged from 0.4 to 2.1 microm. According to the results, when the amount of gelatin in the blended solution decreased, the contact angle increased and water uptake of the scaffold decreased concurrently. In the mechanical tests, the blended nanofibrous scaffolds were elastic, and elasticity increased as the total amount of PU increased. Moreover, as the total amount of gelatin increased, the cell proliferation increased with the same amount of culture time. Therefore, this gelatin/PU blended nanofiber scaffold has potential application for use as a wound dressing.


Biomedical Materials | 2010

Stem cells in bone tissue engineering.

Jeong Min Seong; Byung-Chul Kim; Jae-Hong Park; Il Keun Kwon; Anathathios Mantalaris; Yu-Shik Hwang

Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone.


Advanced Drug Delivery Reviews | 2013

Hydrogels for Delivery of Bioactive Agents: A Historical Perspective

Sang Cheon Lee; Il Keun Kwon; Kinam Park

Since 1960 when the history of modern hydrogels began significant progress has been made in the field of controlled drug delivery. In particular, recent advances in the so-called smart hydrogels have made it possible to design highly sophisticated formulations, e.g., self-regulated drug delivery systems. Despite intensive efforts, clinical applications of smart hydrogels have been limited. Smart hydrogels need to be even smarter to execute functions necessary for achieving desired clinical functions. It is necessary to develop novel hydrogels that meet the requirements of the intended, specific applications, rather than finding applications of newly developed hydrogels. Furthermore, developing smarter hydrogels that can mimic natural systems is necessary, but the fundamental differences between natural and synthetic systems need to be understood. Such understanding will allow us to develop novel hydrogels with the new, multiple functions that we are looking for.


Biomaterials | 2011

Photo-cured hyaluronic acid-based hydrogels containing simvastatin as a bone tissue regeneration scaffold

Min Soo Bae; Dae Hyeok Yang; Jung Bok Lee; Dong Nyoung Heo; Yong-Dae Kwon; In Chan Youn; Kuiwon Choi; Jong Hyun Hong; Gye Tae Kim; Yong Suk Choi; Eui Hwan Hwang; Il Keun Kwon

We describe in this study the positive influences on in vitro and in vivo osteogenesis of photo-cured hyaluronic acid (HA) hydrogels loaded with simvastatin (SIM). Prior to loading SIM, we first characterized the HA hydrogels for their mechanical properties and swelling ratios. The results from this testing indicated that these two factors improved as the substitution degree of 2-aminoethyl methacrylate (AEMA) increased. MTT and live/dead assays showed that the HA hydrogels have good biocompatibility for use as scaffolds for bone tissue regeneration. Moreover, another MTT assay showed that the photo-cured HA hydrogels III fabricated with 30% AEMA (300 mg) conjugated HA (HA-AEMA iii) loaded with between 0.1 and 1 mg of SIM had a similar cytotoxicity as compared to the HA hydrogel III itself. The sustained release of SIM was observed to occur in the HA hydrogel III loaded with 1 mg of SIM. In vitro and in vivo experiments showed that the HA hydrogel III loaded with 1 mg of SIM had a significant influence on osteogenesis.


Carbohydrate Polymers | 2014

Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity

Sang Jin Lee; Dong Nyoung Heo; Ji-Hoi Moon; Wan-Kyu Ko; Jung Bok Lee; Min Soo Bae; Se Woong Park; Ji Eun Kim; Dong Hyun Lee; Eun-Cheol Kim; Chang-Hoon Lee; Il Keun Kwon

The ideal wound dressing would have properties that allow for absorption of exudates, and inhibition of microorganism for wound protection. In this study, we utilized an electrospinning (ELSP) technique to design a novel wound dressing. Chitosan (CTS) nanofibers containing various ratios of silver nanoparticles (AgNPs) were obtained. AgNPs were generated directly in the CTS solution by using a chemical reduction method. The formation and presence of AgNPs in the CTS/AgNPs composite was confirmed by x-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV) and thermogravimetric analysis (TGA). The electrospun CTS/AgNPs nanofibers were characterized morphologically by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). These nanofibers were subsequently tested to evaluate their antibacterial activity against gram-negative Pseudomonas aeruginosa (P. aeruginosa) and gram-positive Methicillin-resistant Staphylococcus aureus (MRSA). Results of this antibacterial testing suggest that CTS/AgNPs nanofibers may be effective in topical antibacterial treatment in wound care.


Journal of Materials Chemistry B | 2014

Enhanced bone regeneration with a gold nanoparticle–hydrogel complex

Dong Nyoung Heo; Wan-Kyu Ko; Min Soo Bae; Jung Bok Lee; Deok-Won Lee; Wook Byun; Chang-Hoon Lee; Eun-Cheol Kim; Bock-Young Jung; Il Keun Kwon

Gold nanoparticles (GNPs) are widely used in diagnostics, drug delivery, biomedical imaging, and photo-thermal therapy due to their surface plasmon resonance, fluorescence, and easy-surface functionalization. According to recent studies, GNPs display a positive effect on the osteogenic differentiation of mesenchymal stem cells (MSCs) and MC3T3-E1 osteoblast-like cells. The aim of this study was to develop a new approach for bone tissue regeneration based on the utilization of a biodegradable hydrogel loaded with GNPs. We have used photo-curable gelatin hydrogels (Gel) in order to provide a proof of principle of GNPs in regeneration strategies for bone tissue repair. We have investigated the effects of these Gel-GNP composite hydrogels both in vitro and in vivo. The in vitro results showed that the hydrogels loaded with GNPs promote proliferation, differentiation, and alkaline phosphate (ALP) activities of human adipose-derived stem cells (ADSCs) as they differentiate towards osteoblast cells in a dose-dependent manner. Moreover, the in vivo results showed that these hydrogels loaded with high concentrations of GNPs had a significant influence on new bone formation. Through these in vitro and vivo tests, we found that the Gel-GNP can be a useful material for bone tissue engineering.


Biochemical and Biophysical Research Communications | 2012

Antioxidants, like coenzyme Q10, selenite, and curcumin, inhibited osteoclast differentiation by suppressing reactive oxygen species generation.

Ho-Jin Moon; Wan-Kyu Ko; Song Wook Han; Duck-Su Kim; Yu-Shik Hwang; Hun-Kuk Park; Il Keun Kwon

Coenzyme Q10 (CoQ10), selenium, and curcumin are known to be powerful antioxidants. Osteoclasts are capable of resorbing mineralized bone and excessive bone resorption by osteoclasts causes bone loss-related diseases. During osteoclast differentiation, the reactive oxygen species (ROS) acts as a secondary messenger on signal pathways. In this study, we investigated whether antioxidants can inhibit RANKL-induced osteoclastogenesis through suppression of ROS generation and compared the relative inhibitory activities of CoQ10, sodium selenite, and curcumin on osteoclast differentiation. We found that antioxidants markedly inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in both bone marrow-derived monocytes (BMMs) and RAW 264.7 cells. Antioxidants scavenged intracellular ROS generation within osteoclast precursors during RANKL-stimulated osteoclastogenesis. These also acted to significantly suppress the gene expression of NFATc1, TRAP, and osteoclast-associated immunoglobulin-like receptor (OSCAR), which are genetic markers of osteoclast differentiation in a dose-dependent manner. These antioxidants also suppressed ROS-induced IκBα signaling pathways for osteoclastogenesis. Specially, curcumin displayed the highest inhibitory effect on osteoclast differentiation when concentrations were held constant. Together, CoQ10, selenite, and curcumin act as inhibitors of RANKL-induced NFATc1 which is a downstream event of NF-κB signal pathway through suppression of ROS generation, thereby suggesting their potential usefulness for the treatment of bone disease associated with excessive bone resorption.


Journal of Biomedical Materials Research Part A | 2008

Lymphocyte/macrophage interactions: Biomaterial surface‐dependent cytokine, chemokine, and matrix protein production

David T. Chang; Jacqueline A. Jones; Howard Meyerson; Erica Colton; Il Keun Kwon; Takehisa Matsuda; James M. Anderson

The role of lymphocytes in the biological response to synthetic polymers is poorly understood despite the transient appearance of lymphocytes at the biomaterial implant site. To investigate cytokines, chemokines, and extracellular matrix (ECM) proteins produced by lymphocytes and macrophages in response to biomaterial surfaces, human peripheral blood monocytes and lymphocytes were co-cultured on polyethylene terephthalate (PET)-based material surfaces displaying distinct hydrophobic, hydrophilic/neutral, hydrophilic/anionic, and hydrophilic/cationic chemistries. Antibody array screening showed the majority of detected proteins are inflammatory mediators that guide the early inflammatory phases of wound healing. Proteomic ELISA quantification and adherent cell analysis were performed after 3, 7, and 10 days of culture. IL-2 and IFN-gamma were not detected in any co-cultures suggesting lack of lymphocyte activation. The hydrophilic/neutral surfaces increased IL-8 relative to the hydrophobic PET surface (p < 0.05). The hydrophilic/anionic surfaces promoted increased TNF-alpha over hydrophobic and cationic surfaces and increased MIP-1beta compared to hydrophobic surfaces (p < 0.05). Since enhanced macrophage fusion was observed on hydrophilic/anionic surfaces, the production of these cytokines likely plays an important role in the fusion process. The hydrophilic/cationic surface promoted IL-10 production and increased matrix metalloproteinase (MMP)-9/tissue inhibitor of MMP (TIMP) relative to hydrophilic/neutral and anionic surfaces (p < 0.05). These results suggest hydrophilic/neutral and anionic surfaces promote pro-inflammatory responses and reduced degradation of the ECM, whereas the hydrophilic/cationic surfaces induce an anti-inflammatory response and greater MMP-9/TIMP with an enhanced potential for ECM breakdown. The study also underscores the usefulness of protein arrays in assessing the role of soluble mediators in the inflammatory response to biomaterials.

Collaboration


Dive into the Il Keun Kwon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donghyun Lee

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dae Hyeok Yang

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge