Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Il Minn is active.

Publication


Featured researches published by Il Minn.


JAMA Neurology | 2017

Imaging of Glial Cell Activation and White Matter Integrity in Brains of Active and Recently Retired National Football League Players

Jennifer Coughlin; Yuchuan Wang; Il Minn; Nicholas Bienko; Emily B. Ambinder; Xin Xu; Matthew E. Peters; John W. Dougherty; Melin Vranesic; Soo Min Koo; Hye-Hyun Ahn; Merton Lee; Chris Cottrell; Haris I. Sair; Akira Sawa; Cynthia A. Munro; Christopher J. Nowinski; Robert F. Dannals; Constantine G. Lyketsos; Michael Kassiou; Gwenn S. Smith; Brian Caffo; Susumu Mori; Tomás R. Guilarte; Martin G. Pomper

Importance Microglia, the resident immune cells of the central nervous system, play an important role in the brain’s response to injury and neurodegenerative processes. It has been proposed that prolonged microglial activation occurs after single and repeated traumatic brain injury, possibly through sports-related concussive and subconcussive injuries. Limited in vivo brain imaging studies months to years after individuals experience a single moderate to severe traumatic brain injury suggest widespread persistent microglial activation, but there has been little study of persistent glial cell activity in brains of athletes with sports-related traumatic brain injury. Objective To measure translocator protein 18 kDa (TSPO), a marker of activated glial cell response, in a cohort of National Football League (NFL) players and control participants, and to report measures of white matter integrity. Design, Setting, and Participants This cross-sectional, case-control study included young active (n = 4) or former (n = 10) NFL players recruited from across the United States, and 16 age-, sex-, highest educational level–, and body mass index–matched control participants. This study was conducted at an academic research institution in Baltimore, Maryland, from January 29, 2015, to February 18, 2016. Main Outcomes and Measures Positron emission tomography–based regional measures of TSPO using [11C]DPA-713, diffusion tensor imaging measures of regional white matter integrity, regional volumes on structural magnetic resonance imaging, and neuropsychological performance. Results The mean (SD) ages of the 14 NFL participants and 16 control participants were 31.3 (6.1) years and 27.6 (4.9) years, respectively. Players reported a mean (SD) of 7.0 (6.4) years (range, 1-21 years) since the last self-reported concussion. Using [11C]DPA-713 positron emission tomographic data from 12 active or former NFL players and 11 matched control participants, the NFL players showed higher total distribution volume in 8 of the 12 brain regions examined (P < .004). We also observed limited change in white matter fractional anisotropy and mean diffusivity in 13 players compared with 15 control participants. In contrast, these young players did not differ from control participants in regional brain volumes or in neuropsychological performance. Conclusions and Relevance The results suggest that localized brain injury and repair, indicated by higher TSPO signal and white matter changes, may be associated with NFL play. Further study is needed to confirm these findings and to determine whether TSPO signal and white matter changes in young NFL athletes are related to later onset of neuropsychiatric symptoms.


Chemistry: A European Journal | 2014

Tuning Phenols with Intra‐Molecular Bond Shifted HYdrogens (IM‐SHY) as diaCEST MRI Contrast Agents

Xing Yang; Nirbhay N. Yadav; Xiaolei Song; Sangeeta Ray Banerjee; Hannah Edelman; Il Minn; Peter C.M. van Zijl; Martin G. Pomper; Michael T. McMahon

The optimal exchange properties for chemical exchange saturation transfer (CEST) contrast agents on 3 T clinical scanners were characterized using continuous wave saturation transfer, and it was demonstrated that the exchangeable protons in phenols can be tuned to reach these criteria through proper ring substitution. Systematic modification allows the chemical shift of the exchangeable protons to be positioned between 4.8 to 12 ppm from water and enables adjustment of the proton exchange rate to maximize CEST contrast at these shifts. In particular, 44 hydrogen-bonded phenols are investigated for their potential as CEST MRI contrast agents and the stereoelectronic effects on their CEST properties are summarized. Furthermore, a pair of compounds, 2,5-dihydroxyterephthalic acid and 4,6-dihydroxyisophthalic acid, were identified which produce the highest sensitivity through incorporating two exchangeable protons per ring.


The Journal of Nuclear Medicine | 2015

Auger Radiopharmaceutical Therapy Targeting Prostate-Specific Membrane Antigen

A.P. Kiess; Il Minn; Ying Chen; R. Hobbs; George Sgouros; Ronnie C. Mease; Mrudula Pullambhatla; Colette Shen; Catherine A. Foss; Martin G. Pomper

Auger electron emitters such as 125I have a high linear energy transfer and short range of emission (<10 μm), making them suitable for treating micrometastases while sparing normal tissues. We used a highly specific small molecule targeting the prostate-specific membrane antigen (PSMA) to deliver 125I to prostate cancer cells. Methods: The PSMA-targeting Auger emitter 2-[3-[1-carboxy-5-(4-125I-iodo-benzoylamino)-pentyl]-ureido]-pentanedioic acid (125I-DCIBzL) was synthesized. DNA damage (via phosphorylated H2A histone family member X staining) and clonogenic survival were tested in PSMA-positive (PSMA+) PC3 PIP and PSMA-negative (PSMA−) PC3 flu human prostate cancer cells after treatment with 125I-DCIBzL. Subcellular drug distribution was assessed with confocal microscopy using a related fluorescent PSMA-targeting compound YC-36. In vivo antitumor efficacy was tested in nude mice bearing PSMA+ PC3 PIP or PSMA− PC3 flu flank xenografts. Animals were administered (intravenously) 111 MBq (3 mCi) of 125I-DCIBzL, 111 MBq (3 mCi) of 125I-NaI, an equivalent amount of nonradiolabeled DCIBzL, or saline. Results: After treatment with 125I-DCIBzL, PSMA+ PC3 PIP cells exhibited increased DNA damage and decreased clonogenic survival when compared with PSMA– PC3 flu cells. Confocal microscopy of YC-36 showed drug distribution in the perinuclear area and plasma membrane. Animals bearing PSMA+ PC3 PIP tumors had significant tumor growth delay after treatment with 125I-DCIBzL, with only 1 mouse reaching 5 times the initial tumor volume by 60 d after treatment, compared with a median time to 5 times volume of less than 15 d for PSMA– PC3 flu tumors and all other treatment groups (P = 0.002 by log-rank test). Conclusion: PSMA-targeted radiopharmaceutical therapy with the Auger emitter 125I-DCIBzL yielded highly specific antitumor efficacy in vivo, suggesting promise for treatment of prostate cancer micrometastases.


The Journal of Nuclear Medicine | 2016

(2S)-2-(3-(1-Carboxy-5-(4-[211At]astatobenzamido)pentyl)ureido)-pentanedioic acid for PSMA-Targeted α-Particle Radiopharmaceutical Therapy

Ana P. Kiess; Il Minn; Ganesan Vaidyanathan; R. Hobbs; Anders Josefsson; C. Shen; Mary E. Brummet; Ying Chen; Jaeyeon Choi; Eftychia Koumarianou; Kwamena E. Baidoo; Martin W. Brechbiel; Ronnie C. Mease; George Sgouros; Michael R. Zalutsky; Martin G. Pomper

Alpha-particle emitters have a high linear energy transfer and short range, offering the potential for treating micrometastases while sparing normal tissues. We developed a urea-based, 211At-labeled small molecule targeting prostate-specific membrane antigen (PSMA) for the treatment of micrometastases due to prostate cancer (PC). Methods: PSMA-targeted (2S)-2-(3-(1-carboxy-5-(4-211At-astatobenzamido)pentyl)ureido)-pentanedioic acid (211At-6) was synthesized. Cellular uptake and clonogenic survival were tested in PSMA-positive (PSMA+) PC3 PIP and PSMA-negative (PSMA−) PC3 flu human PC cells after 211At-6 treatment. The antitumor efficacy of 211At-6 was evaluated in mice bearing PSMA+ PC3 PIP and PSMA– PC3 flu flank xenografts at a 740-kBq dose and in mice bearing PSMA+, luciferase-expressing PC3-ML micrometastases. Biodistribution was determined in mice bearing PSMA+ PC3 PIP and PSMA– PC3 flu flank xenografts. Suborgan distribution was evaluated using α-camera images, and microscale dosimetry was modeled. Long-term toxicity was assessed in mice for 12 mo. Results: 211At-6 treatment resulted in PSMA-specific cellular uptake and decreased clonogenic survival in PSMA+ PC3 PIP cells and caused significant tumor growth delay in PSMA+ PC3 PIP flank tumors. Significantly improved survival was achieved in the newly developed PSMA+ micrometastatic PC model. Biodistribution showed uptake of 211At-6 in PSMA+ PC3 PIP tumors and in kidneys. Microscale kidney dosimetry based on α-camera images and a nephron model revealed hot spots in the proximal renal tubules. Long-term toxicity studies confirmed that the dose-limiting toxicity was late radiation nephropathy. Conclusion: PSMA-targeted 211At-6 α-particle radiotherapy yielded significantly improved survival in mice bearing PC micrometastases after systemic administration. 211At-6 also showed uptake in renal proximal tubules resulting in late nephrotoxicity, highlighting the importance of long-term toxicity studies and microscale dosimetry.


Bioconjugate Chemistry | 2014

Heterobivalent agents targeting PSMA and integrin-αvβ3.

Hassan Shallal; Il Minn; Sangeeta Ray Banerjee; Ala Lisok; Ronnie C. Mease; Martin G. Pomper

Differential expression of surface proteins on normal vs malignant cells provides the rationale for the development of receptor-, antigen-, and transporter-based, cancer-selective imaging and therapeutic agents. However, tumors are heterogeneous, and do not always express what can be considered reliable, tumor-selective markers. That suggests development of more flexible targeting platforms that incorporate multiple moieties enabling concurrent targeting to a variety of putative markers. We report the synthesis, biochemical, in vitro, and preliminary in vivo evaluation of a new heterobivalent (HtBv) imaging agent targeting both the prostate-specific membrane antigen (PSMA) and integrin-αvβ3 surface markers, each of which can be overexpressed in certain tumor epithelium and/or neovasculature. The HtBv agent was functionalized with either 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or the commercially available IRDye800CW. DOTA-conjugated HtBv probe 9 bound to PSMA or αvβ3 with affinities similar to those of monovalent (Mnv) compounds designed to bind to their targets independently. In situ energy minimization experiments support a model describing the conformations adapted by 9 that enable it to bind both targets. IRDye800-conjugated HtBv probe 10 demonstrated target-specific binding to either PSMA or integrin-αvβ3 overexpressing xenografts. HtBv agents 9 and 10 may enable dual-targeted imaging of malignant cells and tissues in an effort to address heterogeneity that confounds many cancer-targeted imaging agents.


Cancer Research | 2014

AEG-1 Promoter–Mediated Imaging of Prostate Cancer

Akrita Bhatnagar; Yuchuan Wang; Ronnie C. Mease; Matthew Gabrielson; Polina Sysa; Il Minn; Gilbert Green; Brian Simmons; Kathleen L. Gabrielson; Siddik Sarkar; Paul B. Fisher; Martin G. Pomper

We describe a new imaging method for detecting prostate cancer, whether localized or disseminated and metastatic to soft tissues and bone. The method relies on the use of imaging reporter genes under the control of the promoter of AEG-1 (MTDH), which is selectively active only in malignant cells. Through a systemic, nanoparticle-based delivery of the imaging construct, lesions can be identified through bioluminescence imaging and single-photon emission computed tomography in the PC3-ML murine model of prostate cancer at high sensitivity. This approach is applicable for the detection of prostate cancer metastases, including bone lesions for which there is no current reliable agent for noninvasive clinical imaging. Furthermore, the approach compares favorably with accepted and emerging clinical standards, including PET with [(18)F]fluorodeoxyglucose and [(18)F]sodium fluoride. Our results offer a preclinical proof of concept that rationalizes clinical evaluation in patients with advanced prostate cancer.


Magnetic Resonance in Medicine | 2015

Tumor-Specific Expression and Detection of a CEST Reporter Gene

Il Minn; Amnon Bar-Shir; Keerthi Yarlagadda; Jeff W. M. Bulte; Paul B. Fisher; Hao Wang; Assaf A. Gilad; Martin G. Pomper

To develop an imaging tool that enables the detection of malignant tissue with enhanced specificity using the exquisite spatial resolution of MRI.


Advances in Cancer Research | 2014

Molecular-genetic imaging of cancer

Il Minn; Mitchell E. Menezes; Siddik Sarkar; Keerthi Yarlagadda; Swadesh K. Das; Luni Emdad; Devanand Sarkar; Paul B. Fisher; Martin G. Pomper

Molecular-genetic imaging of cancer using nonviral delivery systems has great potential for clinical application as a safe, efficient, noninvasive tool for visualization of various cellular processes including detection of cancer, and its attendant metastases. In recent years, significant effort has been expended in overcoming technical hurdles to enable clinical adoption of molecular-genetic imaging. This chapter will provide an introduction to the components of molecular-genetic imaging and recent advances on each component leading to safe, efficient clinical applications for detecting cancer. Combination with therapy, namely, generating molecular-genetic theranostic constructs, will provide further impetus for clinical translation of this promising technology.


Oncotarget | 2015

Imaging of carbonic anhydrase IX with an 111In-labeled dual-motif inhibitor

Xing Yang; Il Minn; Steven P. Rowe; Sangeeta Ray Banerjee; Michael A. Gorin; Mary E. Brummet; Hye Soo Lee; Soo Min Koo; Polina Sysa-Shah; Ronnie C. Mease; Sridhar Nimmagadda; Mohamad E. Allaf; Martin G. Pomper

We developed a new scaffold for radionuclide-based imaging and therapy of clear cell renal cell carcinoma (ccRCC) targeting carbonic anhydrase IX (CAIX). Compound XYIMSR-01, a DOTA-conjugated, bivalent, low-molecular-weight ligand, has two moieties that target two separate sites on CAIX, imparting high affinity. We synthesized [111In]XYIMSR-01 in 73.8–75.8% (n = 3) yield with specific radioactivities ranging from 118 – 1,021 GBq/μmol (3,200–27,600 Ci/mmol). Single photon emission computed tomography of [111In]XYIMSR-01 in immunocompromised mice bearing CAIX-expressing SK-RC-52 tumors revealed radiotracer uptake in tumor as early as 1 h post-injection. Biodistribution studies demonstrated 26% injected dose per gram of radioactivity within tumor at 1 h. Tumor-to-blood, muscle and kidney ratios were 178.1 ± 145.4, 68.4 ± 29.0 and 1.7 ± 1.2, respectively, at 24 h post-injection. Retention of radioactivity was exclusively observed in tumors by 48 h, the latest time point evaluated. The dual targeting strategy to engage CAIX enabled specific detection of ccRCC in this xenograft model, with pharmacokinetics surpassing those of previously described radionuclide-based probes against CAIX.


Journal of Photochemistry and Photobiology B-biology | 2017

A PSMA-targeted theranostic agent for photodynamic therapy

Ying Chen; Samit Chatterjee; Ala Lisok; Il Minn; Mrudula Pullambhatla; Bryan Wharram; Yuchuan Wang; Jiefu Jin; Zaver M. Bhujwalla; Sridhar Nimmagadda; Ronnie C. Mease; Martin G. Pomper

Prostate-specific membrane antigen (PSMA) is over-expressed in the epithelium of prostate cancer and in the neovasculature of many non-prostate solid tumors. PSMA has been increasingly used as a target for cancer imaging and therapy. Here we describe a low-molecular-weight theranostic photosensitizer, YC-9, for PSMA-targeted optical imaging and photodynamic therapy (PDT). YC-9 was synthesized by conjugating IRDye700DX N-hydroxysuccinimide (NHS) ester with a PSMA targeting Lys-Glu urea through a lysine-suberate linker in suitable yield. Optical imaging in vivo demonstrated PSMA-specific tumor uptake of YC-9 with rapid clearance from non-target tissues. PSMA-specific cell kill was demonstrated with YC-9in vitro through PDT in PSMA+ PC3-PIP and PSMA- PC3-flu cells. In vivo PDT in mice bearing PSMA+ PC3-PIP tumors at 4h post-injection of YC-9 (A total of four PDT sessions were performed, 48h apart) resulted in significant tumor growth delay, while tumors in control groups continued to grow. PDT with YC-9 significantly increased the median survival of the PSMA+ PC3-PIP tumor mice (56.5days) compared to control groups [23.5-30.0days, including untreated, light alone, YC-9 alone (without light) and non-targeted IRDye700DX PDT treatment groups], without noticeable toxicity at the doses used. This study proves in principle that YC-9 is a promising therapeutic agent for targeted PDT of PSMA-expressing tissues, such as prostate tumors, and may also be useful against non-prostate tumors by virtue of neovascular PSMA expression.

Collaboration


Dive into the Il Minn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary E. Brummet

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yuchuan Wang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Xing Yang

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

A.P. Kiess

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

George Sgouros

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

R. Hobbs

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Soo Min Koo

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Steven P. Rowe

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge