Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Il-Seon Park is active.

Publication


Featured researches published by Il-Seon Park.


Chemistry & Biology | 1996

Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story

Christopher T. Walsh; Stewart L. Fisher; Il-Seon Park; M. Prahalad; Z. Wu

A plasmid-borne transposon encodes enzymes and regulator proteins that confer resistance of enterococcal bacteria to the antibiotic vancomycin. Purification and characterization of individual proteins encoded by this operon has helped to elucidate the molecular basis of vancomycin resistance. This new understanding provides opportunities for intervention to reverse resistance.


Biochimica et Biophysica Acta | 2009

Cell specificity, anti-inflammatory activity, and plausible bactericidal mechanism of designed Trp-rich model antimicrobial peptides.

Ka Hyon Park; Yong Hai Nan; Yoonkyung Park; Jae Il Kim; Il-Seon Park; Kyung-Soo Hahm; Song Yub Shin

To develop novel short Trp-rich antimicrobial peptides (AMPs) with potent cell specificity (targeting bacteria but not eukaryotic cells) and anti-inflammatory activity, a series of 11-meric Trp-rich model peptides with different ratios of Leu and Lys/Arg residues, XXWXXWXXWXX-NH(2) (X indicates Leu or Lys/Arg), was synthesized. K(6)L(2)W(3) displayed an approximately 40-fold increase in cell specificity, compared with the natural Trp-rich AMP indolicidin (IN). Lys-containing peptides (K(8)W(3), K(7)LW(3) and K(6)L(2)W(3)) showed approximately 2- to 4-fold higher cell specificities than did their counterparts, the Arg-containing peptides (R(8)W(3), R(7)LW(3) and R(6)L(2)W(3)), indicating that multiple Lys residues are more important than multiple Arg residues in the design of AMPs with good cell specificity. The excellent resistance of d-enantiomers (K(6)L(2)W(3)-D and R(6)L(2)W(3)-D) and Orn/Nle-containing peptides (O(6)L(2)W(3) and O(6)L(2)W(3)) to trypsin digestion compared with the rapid breakdown of the l-enantiomers (K(6)L(2)W(3) and R(6)L(2)W(3)), highlights the clinical potential of such peptides. K(6)L(2)W(3), R(6)L(2)W(3), K(6)L(2)W(3)-D and R(6)L(2)W(3)-D caused weak dye leakage from bacterial membrane-mimicking negatively charged EYPG/EYPE (7:3, v/v) liposomes. Confocal microscopy showed that these peptides penetrated the cell membrane of Escherichia coli and accumulated in the cytoplasm, as observed for buforin-2. Gel retardation studies revealed that the peptides bound more strongly to DNA than did IN. These results suggested that one possible peptide bactericidal mechanism may relate to the inhibition of intracellular functions via interference with DNA/RNA synthesis. Furthermore, some model peptides, containing K(6)L(2)W(3), K(5)L(3)W(3), R(6)L(2)W(3), O(6)L(2)W(3), O(6)L(2)W(3), and K(6)L(2)W(3)-D inhibited LPS-induced inducible nitric oxide synthase (iNOS) mRNA expression, the release of nitric oxide (NO) following LPS stimulation in RAW264.7 cells and had powerful LPS binding activities at bactericidal concentrations. Collectively, our results indicated that these peptides have potential for future development as novel antimicrobial and anti-inflammatory agents.


Peptides | 2012

Prokaryotic selectivity and LPS-neutralizing activity of short antimicrobial peptides designed from the human antimicrobial peptide LL-37.

Yong Hai Nan; Jeong-Kyu Bang; Binu Jacob; Il-Seon Park; Song Yub Shin

To develop novel antimicrobial peptides (AMPs) with shorter lengths, improved prokaryotic selectivity and retained lipolysaccharide (LPS)-neutralizing activity compared to human cathelicidin AMP, LL-37, a series of amino acid-substituted analogs based on IG-19 (residues 13-31 of LL-37) were synthesized. Among the IG-19 analogs, the analog a4 showed the highest prokaryotic selectivity, but much lower LPS-neutralizing activity compared to parental LL-37. The analogs, a5, a6, a7 and a8 with higher hydrophobicity displayed LPS-neutralizing activity comparable to that of LL-37, but much lesser prokaryotic selectivity. These results indicate that the proper hydrophobicity of the peptides is crucial to exert the amalgamated property of LPS-neutralizing activity and prokaryotic selectivity. Furthermore, to increase LPS-neutralizing activity of the analog a4 without a remarkable decrease in prokaryotic selectivity, we synthesized Trp-substituted analogs (a4-W1 and a4-W2), in which Phe(5) or Phe(15) of a4 is replaced by Trp. Despite their same prokaryotic selectivity, a4-W2 displayed much higher LPS-neutralizing activity compared to a4-W1. When compared with parental LL-37, a4-W2 showed retained LPS-neutralizing activity and 2.8-fold enhanced prokaryotic selectivity. These results suggest that the effective site for Trp-substitution when designing novel AMPs with higher LPS-neutralizing activity, without a remarkable reduction in prokaryotic selectivity, is the amphipathic interface between the end of the hydrophilic side and the start of the hydrophobic side rather than the central position of the hydrophobic side in their α-helical wheel projection. Taken together, the analog a4-W2 can serve as a promising template for the development of therapeutic agents for the treatment of endotoxic shock and bacterial infection.


Peptides | 2010

Cell selectivity and anti-inflammatory activity of a Leu/Lys-rich α-helical model antimicrobial peptide and its diastereomeric peptides

Peng Wang; Yong Hai Nan; Sung-Tae Yang; Shin-Won Kang; Yangmee Kim; Il-Seon Park; Kyung-Soo Hahm; Song Yub Shin

To investigate the effect of the number and distribution of d-amino acids introduced into non-cell-selective alpha-helical antimicrobial peptides on the cell selectivity, protease stability and anti-inflammatory activity, we synthesized an 18-meric Leu/Lys-rich alpha-helical model peptide (K(9)L(8)W) and d-amino acid-containing diastereomeric peptides. Increasing in cell selectivity of the peptides was increased in parallel with increasing in the number of d-amino acids introduced. Despite having the same number of d-amino acids, D(9)-K(9)L(8)W-1 had better cell selectivity than D(9)-K(9)L(8)W-2, indicating that a dispersed distribution of d-amino acids in diastereomeric peptides is more effective for cell selectivity than their segregated distribution. D(3)-K(9)L(8)W-2, D(6)-K(9)L(8)W, D(9)-K(9)L(8)W-1 and D(9)-K(9)L(8)W-2 showed complete resistance to tryptic digestion. Furthermore, K(9)L(8)W and all of its diastereomeric peptides significantly inhibited nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) mRNA expression and tumor necrosis factor-alpha (TNF-alpha) release in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells at a lower concentration than bactericidal concentration. The order of anti-inflammatory activity for the peptides was K(9)L(8)W approximately D(3)-K(9)L(8)W-1 approximately D(3)-K(9)L(8)W-2 approximately D(6)-K(9)L(8)W approximately D(9)-K(9)L(8)W-2>D(4)-K(9)L(8)W>D(9)-K(9)L(8)W-1. Increasing in hydrophobicity or alpha-helicity of the peptides was more closely correlated with increasing in hemolytic activity and anti-inflammatory activity than antimicrobial and LPS-disaggregation activities. Collectively, we successfully developed several d-amino acid-containing antimicrobial peptides (D(4)-K(9)L(8)W, D(6)-K(9)L(8)W and D(9)-K(9)L(8)W-1) with good cell selectivity, protease stability and potent anti-inflammatory activity. These antimicrobial peptides could serve as templates for the development of peptide antibiotics for the treatment of sepsis, as well as microbial infection.


Journal of Peptide Science | 2013

Short KR-12 analogs designed from human cathelicidin LL-37 possessing both antimicrobial and antiendotoxic activities without mammalian cell toxicity

Binu Jacob; Il-Seon Park; Jeong-Kyu Bang; Song Yub Shin

KR‐12 (residues 18–29 of LL‐37) was known to be the smallest peptide of human cathelicidin LL‐37 possessing antimicrobial activity. In order to optimize α‐helical short antimicrobial peptides having both antimicrobial and antiendotoxic activities without mammalian cell toxicity, we designed and synthesized a series of KR‐12 analogs. Highest hydrophobic analogs KR‐12‐a5 and KR‐12‐a6 displayed greater inhibition of lipopolysaccharide (LPS)‐stimulated tumor necrosis factor‐α production and higher LPS‐binding activity. We have observed that antimicrobial activity is independent of charge, but LPS neutralization requires a balance of hydrophobicity and net positive charge. Among KR‐12 analogs, KR‐12‐a2, KR‐12‐a3 and KR‐12‐a4 showed much higher cell specificity for bacteria over erythrocytes and retained antiendotoxic activity, relative to parental LL‐37. KR‐12‐a5 displayed the strongest antiendotoxic activity but almost similar cell specificity as compared with LL‐37. Also, these KR‐12 analogs (KR‐12‐a2, KR‐12‐a3, KR‐12‐a4 and KR‐12‐a5) exhibited potent antimicrobial activity (minimal inhibitory concentration: 4 μM) against methicillin‐resistant Staphylococcus aureus. Taken together, these KR‐12 analogs have the potential for future development as a novel class of antimicrobial and anti‐inflammatory therapeutic agents. Copyright


Fems Microbiology Letters | 2009

Investigating the effects of positive charge and hydrophobicity on the cell selectivity, mechanism of action and anti-inflammatory activity of a Trp-rich antimicrobial peptide indolicidin

Yong Hai Nan; Ka Hyon Park; Yoonkyung Park; Young Jin Jeon; Yangmee Kim; Il-Seon Park; Kyung-Soo Hahm; Song Yub Shin

To investigate the effects of positive charge and hydrophobicity on the cell selectivity, mechanism of action and anti-inflammatory activity of a Trp-rich antimicrobial peptide indolicidin (IN), a series of IN analogs with Trp-->Lys substitution were synthesized. All IN analogs displayed an approximately 7- to 18-fold higher cell selectivity, compared with IN. IN, IN-1 and IN-2 depolarized (50-90%) the cytoplasmic membrane potential of Staphylococcus aureus close to minimal inhibitory concentration (5-10 microg mL(-1)). However, other IN analogs (IN-3 and IN-4) displayed very low ability in membrane depolarization even at 40 microg mL(-1). Confocal laser-scanning microscopy revealed that IN-3 and IN-4 penetrated the Escherichia coli cell membrane, whereas IN, IN-1 and IN-2 did not enter the cell membrane. In the gel retardation assay, IN-3 and IN-4 bound more strongly to DNA compared with IN, IN-1 and IN-2. These findings suggest that the mechanism of antimicrobial action of IN-3 and IN-4 may be involved in the inhibition of intracellular functions via interference with DNA/RNA synthesis. Unlike IN, all IN analogs did not inhibit nitric oxide production or inducible nitric oxide synthase mRNA expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells, indicating that the hydrophobicity of IN is more important for anti-inflammatory activity in lipopolysaccharide-treated macrophage cells than the positive charge.


Journal of Biomedical Science | 2012

Keampferol-3-O-rhamnoside abrogates amyloid beta toxicity by modulating monomers and remodeling oligomers and fibrils to non-toxic aggregates.

Golam Sharoar; Arjun Thapa; Mohammad Shahnawaz; Vijay Sankar Ramasamy; Eun-Rhan Woo; Song Yub Shin; Il-Seon Park

BackgroundAggregation of soluble, monomeric β- amyloid (Aβ) to oligomeric and then insoluble fibrillar Aβ is a key pathogenic feature in development of Alzheimer’s disease (AD). Increasing evidence suggests that toxicity is linked to diffusible Aβ oligomers, rather than to insoluble fibrils. The use of naturally occurring small molecules for inhibition of Aβ aggregation has recently attracted significant interest for development of effective therapeutic strategies against the disease. A natural polyphenolic flavone, Kaempferol-3-O-rhamnoside (K-3-rh), was utilized to investigate its effects on aggregation and cytotoxic effects of Aβ42 peptide. Several biochemical techniques were used to determine the conformational changes and cytotoxic effect of the peptide in the presence and absence of K-3-rh.ResultsK-3-rh showed a dose-dependent effect against Aβ42 mediated cytotoxicity. Anti-amyloidogenic properties of K-3-rh were found to be efficient in inhibiting fibrilogenesis and secondary structural transformation of the peptide. The consequence of these inhibitions was the accumulation of oligomeric structural species. The accumulated aggregates were smaller, soluble, non-β-sheet and non-toxic aggregates, compared to preformed toxic Aβ oligomers. K-3-rh was also found to have the remodeling properties of preformed soluble oligomers and fibrils. Both of these conformers were found to remodel into non-toxic aggregates. The results showed that K-3-rh interacts with different Aβ conformers, which affects fibril formation, oligomeric maturation and fibrillar stabilization.ConclusionK-3-rh is an efficient molecule to hinder the self assembly and to abrogate the cytotoxic effects of Aβ42 peptide. Hence, K-3-rh and small molecules with similar structure might be considered for therapeutic development against AD.


Journal of Peptide Science | 2011

Antimicrobial activity, bactericidal mechanism and LPS-neutralizing activity of the cell-penetrating peptide pVEC and its analogs.

Yong Hai Nan; Il-Seon Park; Kyung-Soo Hahm; Song Yub Shin

pVEC is a cell‐penetrating peptide derived from the murine vascular endothelial‐cadherin protein. To evaluate the potential of pVEC as antimicrobial peptide (AMP), we synthesized pVEC and its analogs with Trp and Arg/Lys substitution, and their antimicrobial and lipopolysaccharide (LPS)‐neutralizing activities were investigated. pVEC and its analogs displayed a potent antimicrobial activity (minimal inhibitory concentration: 4–16 μM) against Gram‐positive and Gram‐negative bacteria but no or less hemolytic activity (less than 10% hemolysis) even at a concentration of 200 μM. These peptides induced a near‐complete membrane depolarization (more than 80%) at 4 μM against Staphylococcus aureus and a significant dye leakage (35–70%) from bacterial membrane‐mimicking liposome at a concentration as low as 1 μM. The fluorescence profiles of pVEC and its analogs in dye leakage from liposome and membrane depolarization were similar to those of a frog‐derived AMP, magainin 2. These results suggest that pVEC and its analogs kill bacteria by forming a pore or ion channel in the cytoplasmic membrane. pVEC and its analogs significantly inhibited nitric oxide production or tumor necrosis factor‐α release in LPS‐stimulated mouse macrophage RAW264.7 cells at 10 to 50 μM, in which RAW264.7 were not damaged. Taken together, our results suggest that pVEC and its analogs with potent antimicrobial and LPS‐neutralizing activities can serve as AMPs for the treatment of microbial infection and sepsis. Copyright


Biochimica et Biophysica Acta | 2014

Amyloid β binds procaspase-9 to inhibit assembly of Apaf-1 apoptosome and intrinsic apoptosis pathway

Md. Golam Sharoar; Md. Imamul Islam; Md. Shahnawaz; Song Yub Shin; Il-Seon Park

Apoptosis is essential in the death process induced by Amyloid-β (Aβ), a major constituent of diffuse plaques found in Alzheimers disease patients. However, we have found that caspase activation and cell death induced by staurosporine, employed to induce the intrinsic mitochondria-dependent apoptotic pathway, were significantly reduced by 42 amino-acid Aβ42, implying that the peptide also has a negative effect on the apoptotic process. The inhibitory effect of Aβ42 on the apoptotic pathway is associated with its interaction with procaspase-9 and consequent inhibition of Apaf-1 apoptosome assembly. We detected the inhibitory effect in the early stage (<8h) of apoptosis, but later caspase activation becomes obvious. Thus we inferred that the inhibitory process on apoptosis begins at an early stage, and the later robust activation surpasses it. We propose that the apoptotic manifestation in Aβ-treated cells is a combined consequence of those anti- and pro-apoptotic processes.


Amino Acids | 2016

The stereochemical effect of SMAP-29 and SMAP-18 on bacterial selectivity, membrane interaction and anti-inflammatory activity

Binu Jacob; Ganesan Rajasekaran; Eun Young Kim; Il-Seon Park; Jeong-Kyu Bang; Song Yub Shin

Sheep myeloid antimicrobial peptide-29 (SMAP-29) is a cathelicidin-related antimicrobial peptide derived from sheep myeloid cells. In order to investigate the effects of l-to-d-amino acid substitution in SMAP-29 on bacterial selectivity, membrane interaction and anti-inflammatory activity, we synthesized its two d-enantiomeric peptides (SMAP-29-E1 and SMAP-29-E2 containing d-Ile and d-allo-Ile, respectively) and two diastereomeric peptides (SMAP-29-D1 and SMAP-29-D2). Additionally, in order to address the effect of l-to-d-amino acid substitution in the N-terminal helical peptide of SMAP-29 (named SMAP-18) on antimicrobial activity, we synthesized its two d-enantiomeric peptides (SMAP-18-E1 and SMAP-18-E2), which are composed of d-amino acids entirely. l-to-d-amino acid substitution in membrane-targeting AMP, SMAP-29 did not affect its antimicrobial activity. However, d-allo-Ile containing-SMAP-29-E2 and SMAP-29-D2 exhibited less hemolytic activity compared to d-Ile containing-SMAP-29-E1 and SMAP-29-D1, respectively. l-to-d-amino acid substitution in intracellular targeting-AMPs, SMAP-18 and buforin-2 improved antimicrobial activity by 2- to eightfold. The improved antimicrobial activity of the d-isomers of SMAP-18 and buforin-2 seems to be due to the stability against proteases inside bacterial cells. Membrane depolarization and dye leakage suggested that the membrane-disruptive mode of SMAP-29-D1 and SMAP-29-D2 is different from that of SMAP-29, SMAP-29-E1, and SMAP-29-E2. l-to-d-amino acid substitution in SMAP-29 improved anti-inflammatory activity in LPS-stimulated RAW 264.7 cells. In summary, we propose here that d-allo-Ile substitution is a more powerful strategy for increasing bacterial selectivity than d-Ile substitution in the design of d-enantiomeric and diastereomeric AMPs. SMAP-29-D1, and SMAP-29-D2 with improved bacterial selectivity and anti-inflammatory activity can serve as promising candidates for the development of anti-inflammatory and antimicrobial agents.

Collaboration


Dive into the Il-Seon Park's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jae Il Kim

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeong-Kyu Bang

Pusan National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge