Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Il Woo Choi is active.

Publication


Featured researches published by Il Woo Choi.


Physics of Plasmas | 2007

Laser prepulse dependency of proton-energy distributions in ultraintense laser-foil interactions with an online time-of-flight technique

Akifumi Yogo; Hiroyuki Daido; A. Fukumi; Z. Li; K. Ogura; A. Sagisaka; Alexander S. Pirozhkov; Shu Nakamura; Yoshihisa Iwashita; Toshiyuki Shirai; Akira Noda; Yuji Oishi; Takuya Nayuki; Takashi Fujii; Koshichi Nemoto; Il Woo Choi; Jae Hee Sung; Do-Kyeong Ko; Jongmin Lee; Minoru Kaneda; A. Itoh

Fast protons are observed by a newly developed online time-of-flight spectrometer, which provides shot-to-shot proton-energy distributions immediately after the irradiation of a laser pulse having an intensity of ∼1018W∕cm2 onto a 5-μm-thick copper foil. The maximum proton energy is found to increase when the intensity of a fs prepulse arriving 9ns before the main pulse increases from 1014 to 1015W∕cm2. Interferometric measurement indicates that the preformed-plasma expansion at the front surface is smaller than 15μm, which corresponds to the spatial resolution of the diagnostics. This sharp gradient of the plasma has the beneficial effect of increasing the absorption efficiency of the main-pulse energy, resulting in the increase in the proton energy. This is supported by the result that the x-ray intensity from the laser plasma clearly increases with the prepulse intensity.


Optics Communications | 2000

Strong extreme ultraviolet emission from a double-stream xenon/helium gas puff target irradiated with a Nd:YAG laser

Henryk Fiedorowicz; A. Bartnik; H. Daido; Il Woo Choi; Masayuki Suzuki; Susumu Yamagami

Abstract Extreme ultraviolet (EUV) emission in the 8–18 nm wavelength range from a new double-stream gas puff target irradiated with a Nd:YAG laser has been studied for the first time. The target was formed by pulsed injection of a xenon gas stream into a hollow gas stream from helium by using a double-nozzle setup. Strong EUV production near 11 nm from the double-stream xenon/helium target exceeding emissions from iron, copper, and tin solid targets was observed. This new result may be useful to design a laser-produced radiation source for EUV lithography.


Applied Physics Letters | 2009

Focusing and spectral enhancement of a repetition-rated, laser-driven, divergent multi-MeV proton beam using permanent quadrupole magnets

Mamiko Nishiuchi; I. Daito; M. Ikegami; Hiroyuki Daido; M. Mori; S. Orimo; K. Ogura; A. Sagisaka; Akifumi Yogo; A. S. Pirozhkov; H. Sugiyama; Hiromitsu Kiriyama; Hajime Okada; Shuhei Kanazawa; S. Kondo; Takuya Shimomura; Manabu Tanoue; Yoshiki Nakai; Hajime Sasao; Daisuke Wakai; Hironao Sakaki; Paul R. Bolton; Il Woo Choi; Jae Hee Sung; J. Lee; Yuji Oishi; Takashi Fujii; Koshichi Nemoto; Hikaru Souda; Akira Noda

A pair of conventional permanent magnet quadrupoles is used to focus a 2.4 MeV laser-driven proton beam at a 1 Hz repetition rate. The magnetic field strengths are 55 and 60 T/m for the first and second quadrupoles, respectively. The proton beam is focused to a spot with a size of less than ∼3×8 mm2 at a distance of 650 mm from the source. This result is in good agreement with the Monte Carlo particle trajectory simulation.


Physics of Plasmas | 2008

Efficient production of a collimated MeV proton beam from a polyimide target driven by an intense femtosecond laser pulse

Mamiko Nishiuchi; Hiroyuki Daido; Akifumi Yogo; S. Orimo; K. Ogura; Jinglong Ma; A. Sagisaka; Michiaki Mori; A. S. Pirozhkov; Hiromitsu Kiriyama; S. V. Bulanov; T. Zh. Esirkepov; Il Woo Choi; Chul Min Kim; Tae Moon Jeong; Tae Jun Yu; Jae Hee Sung; Seong Ku Lee; Nasr A. M. Hafz; Ki Hong Pae; Young-Chul Noh; Do-Kyeong Ko; Jong-Min Lee; Yuji Oishi; Koshichi Nemoto; Hideo Nagatomo; Keiji Nagai; H. Azuma

High-flux energetic protons whose maximum energies are up to 4MeV are generated by an intense femtosecond titanium:sapphire laser pulse interacting with 7.5, 12.5, and 25μm thick polyimide tape targets. Laser pulse with an energy of 1.7J and with a duration of 34fs is focused with an f/3.4 parabolic mirror giving an intensity of 3×1019Wcm−2. The main pulse to amplified spontaneous emission (ASE) intensity contrast ratio is 2.5×107. The conversion efficiency from the laser energy into the proton kinetic energies is achieved to be ∼3%, which is comparable to or even higher than those achieved in the previous works; using nanometer-thick targets, in combination with the short-pulse lasers that have almost the same pulse width and the intensity but different main pulse to ASE intensity contrast of ∼1010 [Neely et al., Appl. Phys. Lett. 89, 021502 (2006)], in which the authors claim that the main mechanism is target normal sheath acceleration; or using the 7.5μm thick polyimide target, in combination with the ...


Journal of The Optical Society of America B-optical Physics | 2000

Detailed space-resolved characterization of a laser-plasma soft-x-ray source at 13.5-nm wavelength with tin and its oxides

Il Woo Choi; H. Daido; Susumu Yamagami; Keiji Nagai; Takayoshi Norimatsu; Hideaki Takabe; Masayuki Suzuki; Takeyoshi Nakayama; Tetsuya Matsui

Space-resolved soft-x-ray spectra of laser-produced plasmas of pure-Sn metal and its oxides were measured in the spectral range 7–23 nm. We established a comprehensive spectroscopic database of the emission characteristics of the transition array of highly ionized Sn near 13.5-nm wavelength by varying the incident laser energy and the angle between the observation axis and the target normal. We examined the narrow spectral bandwidth of the transition array obtained by use of a gas-mixed fine-particle (SnO2 powder) target proposed by Matsui [Proc. SPIE3886, 610 (2000) ]. We selected pure-Sn metal, SnO and SnO2 powder, and SnO2 thin-film targets with which to clarify the roles of additional constituent ions, such as O and Ar, in plasmas of the gas-mixed fine-particle targets. The space-resolved spectra show that the bandwidth of the transition array broadens dramatically and that the wavelength at peak intensity shifts slightly toward longer wavelengths with increasing distance from the original target surface or with decreasing incident laser energy. The origins of the broadening and the wavelength shift can be explained in terms of an increase in the range of ion stages that contribute to the transition array and in terms of transfer of the dominant ion stages to lower stages. The narrow bandwidth of the gas-mixed fine-particle target is probably due to the presence of a narrow range of moderate ion stages.


Applied Optics | 1997

Space-resolving flat-field extreme ultraviolet spectrograph system and its aberration analysis with wave-front aberration

Il Woo Choi; Jong Ung Lee; Chang Hee Nam

The Nam aberration of a flat-field extreme ultraviolet spectrograph system, composed of a varied line-spacing concave grating and a toroidal mirror, was analyzed by calculating the wave-front aberration with respect to an astigmatic reference surface. The toroidal mirror was used to compensate for the astigmatism that was due to the grazing incidence of light at the concave grating. The spectrograph system could form a space-resolved spectrum along the sagittal direction. The spectral and spatial resolutions of the spectrograph system were estimated from the root-mean-square spot size. The actual spectral resolution of the spectrograph system was measured from extreme ultraviolet spectra obtained from plasmas produced by an iodine laser having an energy of 0.5 J in a 4-ns duration, and it was compared with the calculated value.


Physics of Plasmas | 2016

Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses

I Jong Kim; Ki Hong Pae; Il Woo Choi; Chang-Lyoul Lee; Hyung Taek Kim; Himanshu Singhal; Jae Hee Sung; Seong Ku Lee; Hwang Woon Lee; P. V. Nickles; Tae Moon Jeong; Chul Min Kim; Chang Hee Nam

The radiation pressure acceleration (RPA) of charged particles has been a challenging task in laser-driven proton/ion acceleration due to its stringent requirements in laser and target conditions. The realization of radiation-pressure-driven proton acceleration requires irradiating ultrathin targets with an ultrahigh contrast and ultraintense laser pulses. We report the generation of 93-MeV proton beams achieved by applying 800-nm 30-fs circularly polarized laser pulses with an intensity of 6.1×1020 W/cm2 to 15-nm-thick polymer targets. The radiation pressure acceleration was confirmed from the obtained optimal target thickness, quadratic energy scaling, polarization dependence, and three-dimensional particle-in-cell simulations. We expect this clear demonstration of RPA to facilitate the realization of laser-driven proton/ion sources delivering energetic and short-pulse particle beams for novel applications.


Optics Express | 2007

Precise and long-term stabilization of the carrier-envelope phase of femtosecond laser pulses using an enhanced direct locking technique

Tae Jun Yu; Kyung-Han Hong; Hyung-Gyu Choi; Jae Hee Sung; Il Woo Choi; Do-Kyeong Ko; Jongmin Lee; J.-Y. Kim; Dong Eon Kim; Chang Hee Nam

We demonstrate a long-term operation with reduced phase noise in the carrier-envelope-phase (CEP) stabilization process by employing a double feedback loop and an improved signal detection in the direct locking technique [Opt. Express 13, 2969 (2005)]. A homodyne balanced detection method is employed for efficiently suppressing the dc noise in the f-2f beat signal, which is converted into the CEP noise in the direct locking loop working at around zero carrier-envelope offset frequency (f(ceo)). In order to enhance the long-term stability, we have used the double feedback scheme that modulates both the oscillator pump power for a fast control and the intracavity-prism insertion depth for a slow and high-dynamic-range control. As a result, the in-loop phase jitter is reduced from 50 mrad of the previous result to 29 mrad, corresponding to 13 as in time scale, and the long-term stable operation is achieved for more than 12 hours.


Review of Scientific Instruments | 2009

Ion spectrometer composed of time-of-flight and Thomson parabola spectrometers for simultaneous characterization of laser-driven ions.

Il Woo Choi; C. M. Kim; Jae Hee Sung; Tae Jun Yu; S. K. Lee; I. J. Kim; Y.-Y. Jin; Tae Moon Jeong; Nasr A. M. Hafz; K. H. Pae; Young-Chul Noh; Do-Kyeong Ko; Akifumi Yogo; A. S. Pirozhkov; K. Ogura; S. Orimo; A. Sagisaka; Mamiko Nishiuchi; I. Daito; Yuji Oishi; Yoshihisa Iwashita; Shuji Nakamura; Koshichi Nemoto; Akira Noda; Hiroyuki Daido; Jongmin Lee

An ion spectrometer, composed of a time-of-flight spectrometer (TOFS) and a Thomson parabola spectrometer (TPS), has been developed to measure energy spectra and to analyze species of laser-driven ions. Two spectrometers can be operated simultaneously, thereby facilitate to compare the independently measured data and to combine advantages of each spectrometer. Real-time and shot-to-shot characterizations have been possible with the TOFS, and species of ions can be analyzed with the TPS. The two spectrometers show very good agreement of maximum proton energy even for a single laser shot. The composite ion spectrometer can provide two complementary spectra measured by TOFS with a large solid angle and TPS with a small one for the same ion source, which are useful to estimate precise total ion number and to investigate fine structure of energy spectrum at high energy depending on the detection position and solid angle. Advantage and comparison to other online measurement system, such as the TPS equipped with microchannel plate, are discussed in terms of overlay of ion species, high-repetition rate operation, detection solid angle, and detector characteristics of imaging plate.


Review of Scientific Instruments | 2012

Absolute energy calibration for relativistic electron beams with pointing instability from a laser-plasma accelerator

Hyungki Cha; Il Woo Choi; Hyung Taek Kim; I. J. Kim; K. H. Nam; Tae Moon Jeong; Junghoon Lee

The pointing instability of energetic electron beams generated from a laser-driven accelerator can cause a serious error in measuring the electron spectrum with a magnetic spectrometer. In order to determine a correct electron spectrum, the pointing angle of an electron beam incident on the spectrometer should be exactly defined. Here, we present a method for absolutely calibrating the electron spectrum by monitoring the pointing angle using a scintillating screen installed in front of a permanent dipole magnet. The ambiguous electron energy due to the pointing instability is corrected by the numerical and analytical calculations based on the relativistic equation of electron motion. It is also possible to estimate the energy spread of the electron beam and determine the energy resolution of the spectrometer using the beam divergence angle that is simultaneously measured on the screen. The calibration method with direct measurement of the spatial profile of an incident electron beam has a simple experimental layout and presents the full range of spatial and spectral information of the electron beams with energies of multi-hundred MeV level, despite the limited energy resolution of the simple electron spectrometer.

Collaboration


Dive into the Il Woo Choi's collaboration.

Top Co-Authors

Avatar

Jae Hee Sung

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Do-Kyeong Ko

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tae Jun Yu

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jongmin Lee

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Seong Ku Lee

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tae Moon Jeong

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hiroyuki Daido

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Hyung Taek Kim

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

A. Sagisaka

Japan Atomic Energy Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge