Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilan Gobius is active.

Publication


Featured researches published by Ilan Gobius.


Frontiers in Human Neuroscience | 2014

Evolution and development of interhemispheric connections in the vertebrate forebrain.

Rodrigo Suárez; Ilan Gobius; Linda J. Richards

Axonal connections between the left and right sides of the brain are crucial for bilateral integration of lateralized sensory, motor, and associative functions. Throughout vertebrate species, forebrain commissures share a conserved developmental plan, a similar position relative to each other within the brain and similar patterns of connectivity. However, major events in the evolution of the vertebrate brain, such as the expansion of the telencephalon in tetrapods and the origin of the six-layered isocortex in mammals, resulted in the emergence and diversification of new commissural routes. These new interhemispheric connections include the pallial commissure, which appeared in the ancestors of tetrapods and connects the left and right sides of the medial pallium (hippocampus in mammals), and the corpus callosum, which is exclusive to eutherian (placental) mammals and connects both isocortical hemispheres. A comparative analysis of commissural systems in vertebrates reveals that the emergence of new commissural routes may have involved co-option of developmental mechanisms and anatomical substrates of preexistent commissural pathways. One of the embryonic regions of interest for studying these processes is the commissural plate, a portion of the early telencephalic midline that provides molecular specification and a cellular scaffold for the development of commissural axons. Further investigations into these embryonic processes in carefully selected species will provide insights not only into the mechanisms driving commissural evolution, but also regarding more general biological problems such as the role of developmental plasticity in evolutionary change.


Developmental Biology | 2012

Multiple Slits regulate the development of midline glial populations and the corpus callosum

Divya Unni; Michael Piper; Randal X. Moldrich; Ilan Gobius; Sha Liu; Thomas Fothergill; Amber-Lee S. Donahoo; John M. Baisden; Helen M. Cooper; Linda J. Richards

The Slit molecules are chemorepulsive ligands that regulate axon guidance at the midline of both vertebrates and invertebrates. In mammals, there are three Slit genes, but only Slit2 has been studied in any detail with regard to mammalian brain commissure formation. Here, we sought to understand the relative contributions that Slit proteins make to the formation of the largest brain commissure, the corpus callosum. Slit ligands bind Robo receptors, and previous studies have shown that Robo1(-/-) mice have defects in corpus callosum development. However, whether the Slit genes signal exclusively through Robo1 during callosal formation is unclear. To investigate this, we compared the development of the corpus callosum in both Slit2(-/-) and Robo1(-/-) mice using diffusion magnetic resonance imaging. This analysis demonstrated similarities in the phenotypes of these mice, but crucially also highlighted subtle differences, particularly with regard to the guidance of post-crossing axons. Analysis of single mutations in Slit family members revealed corpus callosum defects (but not complete agenesis) in 100% of Slit2(-/-) mice and 30% of Slit3(-/-) mice, whereas 100% of Slit1(-/-); Slit2(-/-) mice displayed complete agenesis of the corpus callosum. These results revealed a role for Slit1 in corpus callosum development, and demonstrated that Slit2 was necessary but not sufficient for midline crossing in vivo. However, co-culture experiments utilising Robo1(-/-) tissue versus Slit2 expressing cell blocks demonstrated that Slit2 was sufficient for the guidance activity mediated by Robo1 in pre-crossing neocortical axons. This suggested that Slit1 and Slit3 might also be involved in regulating other mechanisms that allow the corpus callosum to form, such as the establishment of midline glial populations. Investigation of this revealed defects in the development and dorso-ventral positioning of the indusium griseum glia in multiple Slit mutants. These findings indicate that Slits regulate callosal development via both classical chemorepulsive mechanisms, and via a novel role in mediating the correct positioning of midline glial populations. Finally, our data also indicate that some of the roles of Slit proteins at the midline may be independent of Robo signalling, suggestive of additional receptors regulating Slit signalling during development.


The Journal of Comparative Neurology | 2010

Molecular Regulation of the Developing Commissural Plate

Randal X. Moldrich; Ilan Gobius; Thomas Pollak; Jiangyang Zhang; Tianbo Ren; Lucia Brown; Susumu Mori; Camino De Juan Romero; Olga V. Britanova; Victor Tarabykin; Linda J. Richards

Coordinated transfer of information between the brain hemispheres is essential for function and occurs via three axonal commissures in the telencephalon: the corpus callosum (CC), hippocampal commissure (HC), and anterior commissure (AC). Commissural malformations occur in over 50 human congenital syndromes causing mild to severe cognitive impairment. Disruption of multiple commissures in some syndromes suggests that common mechanisms may underpin their development. Diffusion tensor magnetic resonance imaging revealed that forebrain commissures crossed the midline in a highly specific manner within an oblique plane of tissue, referred to as the commissural plate. This specific anatomical positioning suggests that correct patterning of the commissural plate may influence forebrain commissure formation. No analysis of the molecular specification of the commissural plate has been performed in any species; therefore, we utilized specific transcription factor markers to delineate the commissural plate and identify its various subdomains. We found that the mouse commissural plate consists of four domains and tested the hypothesis that disruption of these domains might affect commissure formation. Disruption of the dorsal domains occurred in strains with commissural defects such as Emx2 and Nfia knockout mice but commissural plate patterning was normal in other acallosal strains such as Satb2−/−. Finally, we demonstrate an essential role for the morphogen Fgf8 in establishing the commissural plate at later developmental stages. The results demonstrate that correct patterning of the commissural plate is an important mechanism in forebrain commissure formation. J. Comp. Neurol. 518:3645–3661, 2010.


Nature Genetics | 2017

Mutations in DCC cause isolated agenesis of the corpus callosum with incomplete penetrance

Ashley P.L. Marsh; Delphine Héron; Timothy J. Edwards; Angélique Quartier; Charles A. Galea; Caroline Nava; Agnès Rastetter; Marie Laure Moutard; Vicki Anderson; Pierre Bitoun; Jens Bunt; Anne Faudet; Catherine Garel; Greta Gillies; Ilan Gobius; Justine Guegan; Solveig Heide; Boris Keren; Fabien Lesne; Vesna Lukic; Simone Mandelstam; George McGillivray; Alissandra McIlroy; Aurélie Méneret; Cyril Mignot; Laura R. Morcom; Sylvie Odent; Annalisa Paolino; Kate Pope; Florence Riant

Brain malformations involving the corpus callosum are common in children with developmental disabilities. We identified DCC mutations in four families and five sporadic individuals with isolated agenesis of the corpus callosum (ACC) without intellectual disability. DCC mutations result in variable dominant phenotypes with decreased penetrance, including mirror movements and ACC associated with a favorable developmental prognosis. Possible phenotypic modifiers include the type and location of mutation and the sex of the individual.


Cell Reports | 2016

Astroglial-Mediated Remodeling of the Interhemispheric Midline Is Required for the Formation of the Corpus Callosum

Ilan Gobius; Laura R. Morcom; Rodrigo Suárez; Jens Bunt; Polina Bukshpun; William Reardon; William B. Dobyns; John L.R. Rubenstein; A. James Barkovich; Elliott H. Sherr; Linda J. Richards

The corpus callosum is the major axon tract that connects and integrates neural activity between the two cerebral hemispheres. Although ∼1:4,000 children are born with developmental absence of the corpus callosum, the primary etiology of this condition remains unknown. Here, we demonstrate that midline crossing of callosal axons is dependent upon the prior remodeling and degradation of the intervening interhemispheric fissure. This remodeling event is initiated by astroglia on either side of the interhemispheric fissure, which intercalate with one another and degrade the intervening leptomeninges. Callosal axons then preferentially extend over these specialized astroglial cells to cross the midline. A key regulatory step in interhemispheric remodeling is the differentiation of these astroglia from radial glia, which is initiated by Fgf8 signaling to downstream Nfi transcription factors. Crucially, our findings from human neuroimaging studies reveal that developmental defects in interhemispheric remodeling are likely to be a primary etiology underlying human callosal agenesis.


Neural Development | 2015

Formation of functional areas in the cerebral cortex is disrupted in a mouse model of autism spectrum disorder

Laura R. Fenlon; Sha Liu; Ilan Gobius; Nyoman D. Kurniawan; Skyle Murphy; Randal X. Moldrich; Linda J. Richards

BackgroundAutism spectrum disorders (ASD) are a group of poorly understood behavioural disorders, which have increased in prevalence in the past two decades. Animal models offer the opportunity to understand the biological basis of these disorders. Studies comparing different mouse strains have identified the inbred BTBR T + tf/J (BTBR) strain as a mouse model of ASD based on its anti-social and repetitive behaviours. Adult BTBR mice have complete agenesis of the corpus callosum, reduced cortical thickness and changes in early neurogenesis. However, little is known about the development or ultimate organisation of cortical areas devoted to specific sensory and motor functions in these mice that may also contribute to their behavioural phenotype.ResultsIn this study, we performed diffusion tensor imaging and tractography, together with histological analyses to investigate the emergence of functional areas in the cerebral cortex and their connections in BTBR mice and age-matched C57Bl/6 control mice. We found evidence that neither the anterior commissure nor the hippocampal commissure compensate for the loss of callosal connections, indicating that no interhemispheric neocortical connectivity is present in BTBR mice. We also found that both the primary visual and somatosensory cortical areas are shifted medially in BTBR mice compared to controls and that cortical thickness is differentially altered in BTBR mice between cortical areas and throughout development.ConclusionsWe demonstrate that interhemispheric connectivity and cortical area formation are altered in an age- and region-specific manner in BTBR mice, which may contribute to the behavioural deficits previously observed in this strain. Some of these developmental patterns of change are also present in human ASD patients, and elucidating the aetiology driving cortical changes in BTBR mice may therefore help to increase our understanding of this disorder.


Development | 2016

Transcriptional regulation of intermediate progenitor cell generation during hippocampal development

Lachlan Harris; Oressia Zalucki; Ilan Gobius; Hannah McDonald; Jason Osinki; Tracey J. Harvey; Alexandra Essebier; Diana Vidovic; Ivan Gladwyn-Ng; Thomas H. J. Burne; Julian Ik-Tsen Heng; Linda J. Richards; Richard M. Gronostajski; Michael Piper

During forebrain development, radial glia generate neurons through the production of intermediate progenitor cells (IPCs). The production of IPCs is a central tenet underlying the generation of the appropriate number of cortical neurons, but the transcriptional logic underpinning this process remains poorly defined. Here, we examined IPC production using mice lacking the transcription factor nuclear factor I/X (Nfix). We show that Nfix deficiency delays IPC production and prolongs the neurogenic window, resulting in an increased number of neurons in the postnatal forebrain. Loss of additional Nfi alleles (Nfib) resulted in a severe delay in IPC generation while, conversely, overexpression of NFIX led to precocious IPC generation. Mechanistically, analyses of microarray and ChIP-seq datasets, coupled with the investigation of spindle orientation during radial glial cell division, revealed that NFIX promotes the generation of IPCs via the transcriptional upregulation of inscuteable (Insc). These data thereby provide novel insights into the mechanisms controlling the timely transition of radial glia into IPCs during forebrain development. Summary: The Nfix and Nfib transcription factors are required for the timely transition of radial glia into intermediate progenitor cells during mouse forebrain development.


Cerebral Cortex | 2015

Diffusion MR Microscopy of Cortical Development in the Mouse Embryo

Manisha Aggarwal; Ilan Gobius; Linda J. Richards; Susumu Mori

Cortical development in the mouse embryo involves complex changes in the microstructure of the telencephalic wall, which are challenging to examine using three-dimensional (3D) imaging techniques. In this study, high-resolution 3D diffusion magnetic resonance (dMR) microscopy of the embryonic mouse cortex is presented. Using diffusion-weighted gradient- and spin-echo based acquisition, dMR microimaging data were acquired from fixed mouse embryos at 7 developmental stages from embryonic day (E)12.5 to E18.5. The dMR imaging (dMRI) contrasts revealed microscopic structural detail in the mouse telencephalic wall, allowing delineation of transient zones in the developing cortex based on their unique diffusion signatures. With the high-resolution 3D data of the mouse embryo, we were able to visualize the complex microstructure of embryonic cerebral tissue and to resolve its regional and temporal evolution during cortical formation. Furthermore, averaged dMRI contrasts generated via deformable registration revealed distinct spatial and temporal gradients of anisotropy variation across the developing embryonic cortical plate and the ventricular zone. The findings of this study demonstrate the potential of 3D dMRI to resolve the complex microstructure of the embryonic mouse cortex, and will be important for investigations of corticogenesis and its disruption in embryonic mouse models.


Nature Communications | 2018

Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner

Stanislaw Mitew; Ilan Gobius; Laura R. Fenlon; Stuart J. McDougall; David Hawkes; Yao Lulu Xing; Helena Bujalka; Andrew L. Gundlach; Linda J. Richards; Trevor J. Kilpatrick; Tobias D. Merson; Ben Emery

Mounting evidence suggests that neuronal activity influences myelination, potentially allowing for experience-driven modulation of neural circuitry. The degree to which neuronal activity is capable of regulating myelination at the individual axon level is unclear. Here we demonstrate that stimulation of somatosensory axons in the mouse brain increases proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) within the underlying white matter. Stimulated axons display an increased probability of being myelinated compared to neighboring non-stimulated axons, in addition to being ensheathed with thicker myelin. Conversely, attenuating neuronal firing reduces axonal myelination in a selective activity-dependent manner. Our findings reveal that the process of selecting axons for myelination is strongly influenced by the relative activity of individual axons within a population. These observed cellular changes are consistent with the emerging concept that adaptive myelination is a key mechanism for the fine-tuning of neuronal circuitry in the mammalian CNS.Neuronal activity is known to increase myelination by oligodendrocytes in the mouse brain. Here, Mitew et al. demonstrate that chemogenetic manipulations of somatosensory axon activity both increase the generation of new oligodendrocytes and preferentially enhance myelination of the activated axons.


Development | 2015

EMX1 regulates NRP1-mediated wiring of the mouse anterior cingulate cortex

Jonathan W. C. Lim; Amber-Lee S. Donahoo; Jens Bunt; Timothy J. Edwards; Laura R. Fenlon; Ying Liu; Jing Zhou; Randal X. Moldrich; Michael Piper; Ilan Gobius; Timothy L. Bailey; Naomi R. Wray; Nicoletta Kessaris; Mu-ming Poo; John L.R. Rubenstein; Linda J. Richards

Transcription factors act during cortical development as master regulatory genes that specify cortical arealization and cellular identities. Although numerous transcription factors have been identified as being crucial for cortical development, little is known about their downstream targets and how they mediate the emergence of specific neuronal connections via selective axon guidance. The EMX transcription factors are essential for early patterning of the cerebral cortex, but whether EMX1 mediates interhemispheric connectivity by controlling corpus callosum formation remains unclear. Here, we demonstrate that in mice on the C57Bl/6 background EMX1 plays an essential role in the midline crossing of an axonal subpopulation of the corpus callosum derived from the anterior cingulate cortex. In the absence of EMX1, cingulate axons display reduced expression of the axon guidance receptor NRP1 and form aberrant axonal bundles within the rostral corpus callosum. EMX1 also functions as a transcriptional activator of Nrp1 expression in vitro, and overexpression of this protein in Emx1 knockout mice rescues the midline-crossing phenotype. These findings reveal a novel role for the EMX1 transcription factor in establishing cortical connectivity by regulating the interhemispheric wiring of a subpopulation of neurons within the mouse anterior cingulate cortex. Summary: EMX1, known to be involved in early cortical patterning, also has a role in interhemisphere axon guidance by promoting expression of the guidance receptor NRP1.

Collaboration


Dive into the Ilan Gobius's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Bunt

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Piper

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge