Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda J. Richards is active.

Publication


Featured researches published by Linda J. Richards.


Developmental Cell | 2003

Neuropilin-1 Conveys Semaphorin and VEGF Signaling during Neural and Cardiovascular Development

Chenghua Gu; E. Rene Rodriguez; Dorothy V. Reimert; Tianzhi Shu; Bernd Fritzsch; Linda J. Richards; Alex L. Kolodkin; David D. Ginty

Neuropilin-1 (Npn-1) is a receptor that binds multiple ligands from structurally distinct families, including secreted semaphorins (Sema) and vascular endothelial growth factors (VEGF). We generated npn-1 knockin mice, which express an altered ligand binding site variant of Npn-1, and npn-1 conditional null mice to establish the cell-type- and ligand specificity of Npn-1 function in the developing cardiovascular and nervous systems. Our results show that VEGF-Npn-1 signaling in endothelial cells is required for angiogenesis. In striking contrast, Sema-Npn-1 signaling is not essential for general vascular development but is required for axonal pathfinding by several populations of neurons in the CNS and PNS. Remarkably, both Sema-Npn-1 signaling and VEGF-Npn-1 signaling are critical for heart development. Therefore, Npn-1 is a multifunctional receptor that mediates the activities of structurally distinct ligands during development of the heart, vasculature, and nervous system.


Nature Reviews Neuroscience | 2007

Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity.

Lynn K. Paul; Warren S. Brown; Ralph Adolphs; J. Michael Tyszka; Linda J. Richards; Pratik Mukherjee; Elliott H. Sherr

Agenesis of the corpus callosum (AgCC), a failure to develop the large bundle of fibres that connect the cerebral hemispheres, occurs in 1:4000 individuals. Genetics, animal models and detailed structural neuroimaging are now providing insights into the developmental and molecular bases of AgCC. Studies using neuropsychological, electroencephalogram and functional MRI approaches are examining the resulting impairments in emotional and social functioning, and have begun to explore the functional neuroanatomy underlying impaired higher-order cognition. The study of AgCC could provide insight into the integrated cerebral functioning of healthy brains, and may offer a model for understanding certain psychiatric illnesses, such as schizophrenia and autism.


NeuroImage | 2006

White and gray matter development in human fetal, newborn and pediatric brains

Hao Huang; Jiangyang Zhang; Setsu Wakana; Weihong Zhang; Tianbo Ren; Linda J. Richards; Paul Yarowsky; Pamela K. Donohue; Ernest M. Graham; Peter C.M. van Zijl; Susumu Mori

Brain anatomy is characterized by dramatic growth from the end of the second trimester through the neonatal stage. The characterization of normal axonal growth of the white matter tracts has not been well-documented to date and could provide important clues to understanding the extensive inhomogeneity of white matter injuries in cerebral palsy (CP) patients. However, anatomical studies of human brain development during this period are surprisingly scarce and histology-based atlases have become available only recently. Diffusion tensor magnetic resonance imaging (DTMRI) can reveal detailed anatomy of white matter. We acquired diffusion tensor images (DTI) of postmortem fetal brain samples and in vivo neonates and children. Neural structures were annotated in two-dimensional (2D) slices, segmented, measured, and reconstructed three-dimensionally (3D). The growth status of various white matter tracts was evaluated on cross-sections at 19-20 gestational weeks, and compared with 0-month-old neonates and 5- to 6-year-old children. Limbic, commissural, association, and projection white matter tracts and gray matter structures were illustrated in 3D and quantitatively characterized to assess their dynamic changes. The overall pattern of the time courses for the development of different white matter is that limbic fibers develop first and association fibers last and commissural and projection fibers are forming from anterior to posterior part of the brain. The resultant DTMRI-based 3D human brain data will be a valuable resource for human brain developmental study and will provide reference standards for diagnostic radiology of premature newborns.


Neuron | 1996

Labeling Neural Cells Using Adenoviral Gene Transfer of Membrane-Targeted GFP

Koki Moriyoshi; Linda J. Richards; Chihiro Akazawa; Dennis D.M. O'Leary; Shigetada Nakanishi

We describe an experimental system to visualize the soma and processes of mammalian neurons and glia in living and fixed preparations by using a recombinant adenovirus vector to transfer the jellyfish green fluorescent protein (GFP) into postmitotic neural cells both in vitro and in vivo. We have introduced several modifications of GFP that enhance its fluorescence intensity in mammalian axons and dendrites. This method should be useful for studying the dynamic processes of cell migration and the development of neuronal connections, as well as for analyzing the function of exogenous genes introduced into cells using the adenovirus vector.


Molecular and Cellular Biology | 2005

The Transcription Factor Gene Nfib Is Essential for both Lung Maturation and Brain Development

George Steele-Perkins; Céline Plachez; Kenneth G. Butz; Guanhu Yang; Cindy J. Bachurski; Stephen L. Kinsman; E. David Litwack; Linda J. Richards; Richard M. Gronostajski

ABSTRACT The phylogenetically conserved nuclear factor I (NFI) gene family encodes site-specific transcription factors essential for the development of a number of organ systems. We showed previously that Nfia-deficient mice exhibit agenesis of the corpus callosum and other forebrain defects, whereas Nfic-deficient mice have agenesis of molar tooth roots and severe incisor defects. Here we show that Nfib-deficient mice possess unique defects in lung maturation and exhibit callosal agenesis and forebrain defects that are similar to, but more severe than, those seen in Nfia-deficient animals. In addition, loss of Nfib results in defects in basilar pons formation and hippocampus development that are not seen in Nfia-deficient mice. Heterozygous Nfib-deficient animals also exhibit callosal agenesis and delayed lung maturation, indicating haploinsufficiency at the Nfib locus. The similarity in brain defects in Nfia- and Nfib-deficient animals suggests that these two genes may cooperate in late fetal forebrain development, while Nfib is essential for late fetal lung maturation and development of the pons.


Development | 2006

Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain

William Andrews; Anastasia Liapi; Céline Plachez; Laura Camurri; Jiangyang Zhang; Susumu Mori; Fujio Murakami; John G. Parnavelas; Vasi Sundaresan; Linda J. Richards

The Slit genes encode secreted ligands that regulate axon branching, commissural axon pathfinding and neuronal migration. The principal identified receptor for Slit is Robo (Roundabout in Drosophila). To investigate Slit signalling in forebrain development, we generated Robo1 knockout mice by targeted deletion of exon 5 of the Robo1 gene. Homozygote knockout mice died at birth, but prenatally displayed major defects in axon pathfinding and cortical interneuron migration. Axon pathfinding defects included dysgenesis of the corpus callosum and hippocampal commissure, and abnormalities in corticothalamic and thalamocortical targeting. Slit2 and Slit1/2 double mutants display malformations in callosal development, and in corticothalamic and thalamocortical targeting, as well as optic tract defects. In these animals, corticothalamic axons form large fasciculated bundles that aberrantly cross the midline at the level of the hippocampal and anterior commissures, and more caudally at the medial preoptic area. Such phenotypes of corticothalamic targeting were not observed in Robo1 knockout mice but, instead, both corticothalamic and thalamocortical axons aberrantly arrived at their respective targets at least 1 day earlier than controls. By contrast, in Slit mutants, fewer thalamic axons actually arrive in the cortex during development. Finally, significantly more interneurons (up to twice as many at E12.5 and E15.5) migrated into the cortex of Robo1 knockout mice, particularly in both rostral and parietal regions, but not caudal cortex. These results indicate that Robo1 mutants have distinct phenotypes, some of which are different from those described in Slit mutants, suggesting that additional ligands, receptors or receptor partners are likely to be involved in Slit/Robo signalling.


Nature Neuroscience | 2004

A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients

William J. Rosoff; Jeffrey S. Urbach; Mark A. Esrick; Ryan McAllister; Linda J. Richards; Geoffrey J. Goodhill

Axonal chemotaxis is believed to be important in wiring up the developing and regenerating nervous system, but little is known about how axons actually respond to molecular gradients. We report a new quantitative assay that allows the long-term response of axons to gradients of known and controllable shape to be examined in a three-dimensional gel. Using this assay, we show that axons may be natures most-sensitive gradient detectors, but this sensitivity exists only within a narrow range of ligand concentrations. This assay should also be applicable to other biological processes that are controlled by molecular gradients, such as cell migration and morphogenesis.


The Journal of Neuroscience | 2009

Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging

Hao Huang; Rong Xue; Jiangyang Zhang; Tianbo Ren; Linda J. Richards; Paul Yarowsky; Michael I. Miller; Susumu Mori

The human brain is extraordinarily complex, and yet its origin is a simple tubular structure. Characterizing its anatomy at different stages of human fetal brain development not only aids in understanding this highly ordered process but also provides clues to detecting abnormalities caused by genetic or environmental factors. During the second trimester of human fetal development, neural structures in the brain undergo significant morphological changes. Diffusion tensor imaging (DTI), a novel method of magnetic resonance imaging, is capable of delineating anatomical components with high contrast and revealing structures at the microscopic level. In this study, high-resolution and high-signal-to-noise-ratio DTI data of fixed tissues of second-trimester human fetal brains were acquired and analyzed. DTI color maps and tractography revealed that important white matter tracts, such as the corpus callosum and uncinate and inferior longitudinal fasciculi, become apparent during this period. Three-dimensional reconstruction shows that major brain fissures appear while most of the cerebral surface remains smooth until the end of the second trimester. A dominant radial organization was identified at 15 gestational weeks, followed by both laminar and radial architectures in the cerebral wall throughout the remainder of the second trimester. Volumetric measurements of different structures indicate that the volumes of basal ganglia and ganglionic eminence increase along with that of the whole brain, while the ventricle size decreases in the later second trimester. The developing fetal brain DTI database presented can be used for education, as an anatomical research reference, and for data registration.


Clinical Genetics | 2004

Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human

Linda J. Richards; Céline Plachez; Tianbo Ren

The development of the corpus callosum depends on a large number of different cellular and molecular mechanisms. These include the formation of midline glial populations, and the expression of specific molecules required to guide callosal axons as they cross the midline. An additional mechanism used by callosal axons from neurons in the neocortex is to grow within the pathway formed by pioneering axons derived from neurons in the cingulate cortex. Data in humans and in mice suggest the possibility that different mechanisms may regulate the development of the corpus callosum across its rostrocaudal and dorsoventral axes. The complex developmental processes required for formation of the corpus callosum may provide some insight into why such a large number of human congenital syndromes are associated with agenesis of this structure.


The Journal of Neuroscience | 2003

Abnormal Development of Forebrain Midline Glia and Commissural Projections in Nfia Knock-Out Mice

Tianzhi Shu; Kenneth G. Butz; Céline Plachez; Richard M. Gronostajski; Linda J. Richards

Nuclear factor I (NFI) genes are expressed in multiple organs throughout development (Chaudhry et al., 1997; for review, seeGronostajski, 2000). All four NFI genes are expressed in embryonic mouse brain, with Nfia, Nfib, andNfix being expressed highly in developing cortex (Chaudhry et al., 1997). Disruption of the Nfia gene causes agenesis of the corpus callosum (ACC), hydrocephalus, and reduced GFAP expression (das Neves et al., 1999). Three midline structures, the glial wedge, glia within the indusium griseum, and the glial sling are involved in development of the corpus callosum (Silver et al., 1982; Silver and Ogawa, 1983; Shu and Richards, 2001). BecauseNfia−/−mice show glial abnormalities and ACC, we asked whether defects in midline glial structures occur inNfia− / − mice. NFI-A protein is expressed in all three midline populations. InNfia− / − , mice sling cells are generated but migrate abnormally into the septum and do not form a sling. Glia within the indusium griseum and the glial wedge are greatly reduced or absent and consequently Slit2 expression is also reduced. Although callosal axons approach the midline, they fail to cross and extend aberrantly into the septum. The hippocampal commissure is absent or reduced, whereas the ipsilaterally projecting perforating axons (Hankin and Silver, 1988; Shu et al., 2001) appear relatively normal. These results support an essential role for midline glia in callosum development and a role for Nfia in the formation of midline glial structures.

Collaboration


Dive into the Linda J. Richards's collaboration.

Top Co-Authors

Avatar

Michael Piper

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilan Gobius

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Jens Bunt

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susumu Mori

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Guy Barry

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge