Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilana Nissim is active.

Publication


Featured researches published by Ilana Nissim.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis

Ralph J. DeBerardinis; Anthony Mancuso; Evgueni Daikhin; Ilana Nissim; Marc Yudkoff; Suzanne Wehrli; Craig B. Thompson

Tumor cell proliferation requires rapid synthesis of macromolecules including lipids, proteins, and nucleotides. Many tumor cells exhibit rapid glucose consumption, with most of the glucose-derived carbon being secreted as lactate despite abundant oxygen availability (the Warburg effect). Here, we used 13C NMR spectroscopy to examine the metabolism of glioblastoma cells exhibiting aerobic glycolysis. In these cells, the tricarboxylic acid (TCA) cycle was active but was characterized by an efflux of substrates for use in biosynthetic pathways, particularly fatty acid synthesis. The success of this synthetic activity depends on activation of pathways to generate reductive power (NADPH) and to restore oxaloacetate for continued TCA cycle function (anaplerosis). Surprisingly, both these needs were met by a high rate of glutamine metabolism. First, conversion of glutamine to lactate (glutaminolysis) was rapid enough to produce sufficient NADPH to support fatty acid synthesis. Second, despite substantial mitochondrial pyruvate metabolism, pyruvate carboxylation was suppressed, and anaplerotic oxaloacetate was derived from glutamine. Glutamine catabolism was accompanied by secretion of alanine and ammonia, such that most of the amino groups from glutamine were lost from the cell rather than incorporated into other molecules. These data demonstrate that transformed cells exhibit a high rate of glutamine consumption that cannot be explained by the nitrogen demand imposed by nucleotide synthesis or maintenance of nonessential amino acid pools. Rather, glutamine metabolism provides a carbon source that facilitates the cells ability to use glucose-derived carbon and TCA cycle intermediates as biosynthetic precursors.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction.

David R. Wise; Ralph J. DeBerardinis; Anthony Mancuso; Nabil Sayed; Xiao Yong Zhang; Harla K. Pfeiffer; Ilana Nissim; Evgueni Daikhin; Marc Yudkoff; Steven B. McMahon; Craig B. Thompson

Mammalian cells fuel their growth and proliferation through the catabolism of two main substrates: glucose and glutamine. Most of the remaining metabolites taken up by proliferating cells are not catabolized, but instead are used as building blocks during anabolic macromolecular synthesis. Investigations of phosphoinositol 3-kinase (PI3K) and its downstream effector AKT have confirmed that these oncogenes play a direct role in stimulating glucose uptake and metabolism, rendering the transformed cell addicted to glucose for the maintenance of survival. In contrast, less is known about the regulation of glutamine uptake and metabolism. Here, we report that the transcriptional regulatory properties of the oncogene Myc coordinate the expression of genes necessary for cells to engage in glutamine catabolism that exceeds the cellular requirement for protein and nucleotide biosynthesis. A consequence of this Myc-dependent glutaminolysis is the reprogramming of mitochondrial metabolism to depend on glutamine catabolism to sustain cellular viability and TCA cycle anapleurosis. The ability of Myc-expressing cells to engage in glutaminolysis does not depend on concomitant activation of PI3K or AKT. The stimulation of mitochondrial glutamine metabolism resulted in reduced glucose carbon entering the TCA cycle and a decreased contribution of glucose to the mitochondrial-dependent synthesis of phospholipids. These data suggest that oncogenic levels of Myc induce a transcriptional program that promotes glutaminolysis and triggers cellular addiction to glutamine as a bioenergetic substrate.


Journal of Neurochemistry | 1990

Glutathione turnover in cultured astrocytes: Studies with [15N]glutamate

Marc Yudkoff; David Pleasure; Lynn Cregar; Zhi-Ping Lin; Ilana Nissim; Janet Stern; Itzhak Nissim

Abstract: The incorporation of [15N]glutamic acid into glutathione was studied in primary cultures of astrocytes. Turnover of the intracellular glutathione pool was rapid, attaining a steady state value of 30.0 atom% excess in 180 min. The intracellular glutathione concentration was high (20–40 nmol/mg protein) and the tripeptide was released rapidly into the incubation medium. Although labeling of glutathione (atom% excess) with [15N]glutamate occurred rapidly, little accumulation of 15N in glutathione was noted during the incubation compared with 15N in aspartate, glutamine, and alanine. Glutathione turnover was stimulated by incubating the astrocytes with diethylmaleate, an electrophile that caused a partial depletion of the glutathione pool(s). Diethylmaleate treatment also was associated with significant reductions of intraastrocytic glutamate, glycine, and cysteine, i.e., the constituents of glutathione. Glutathione synthesis could be stimulated by supplementing the steady‐state incubation medium with 0.05 mM L‐cysteine, such treatment again partially depleting intraastrocytic glutamate and causing significant reductions of 15N labeling of both alanine and glutamine, suggesting that glutamate had been diverted from the synthesis of these amino acids and toward the formation of glutathione. The current study underscores both the intensity of glutathione turnover in astrocytes and the relationship of this turnover to the metabolism of glutamate and other amino acids.


Journal of Biological Chemistry | 2003

Regulation of Leucine-stimulated Insulin Secretion and Glutamine Metabolism in Isolated Rat Islets

Changhong Li; Habiba Najafi; Yevgeny Daikhin; Ilana Nissim; Heather W. Collins; Marc Yudkoff; Franz M. Matschinsky; Charles A. Stanley

Glutamate dehydrogenase (GDH) is regulated by both positive (leucine and ADP) and negative (GTP and ATP) allosteric factors. We hypothesized that the phosphate potential of β-cells regulates the sensitivity of leucine stimulation. These predictions were tested by measuring leucine-stimulated insulin secretion in perifused rat islets following glucose depletion and by tracing the nitrogen flux of [2-15N]glutamine using stable isotope techniques. The sensitivity of leucine stimulation was enhanced by long time (120-min) energy depletion and inhibited by glucose pretreatment. After limited 50-min glucose depletion, leucine, not α-ketoisocaproate, failed to stimulate insulin release. β-Cells sensitivity to leucine is therefore proposed to be a function of GDH activation. Leucine increased the flux through GDH 3-fold compared with controls while causing insulin release. High glucose inhibited flux through both glutaminase and GDH, and leucine was unable to override this inhibition. These results clearly show that leucine induced the secretion of insulin by augmenting glutaminolysis through activating glutaminase and GDH. Glucose regulates β-cell sensitivity to leucine by elevating the ratio of ATP and GTP to ADP and Pi and thereby decreasing the flux through GDH and glutaminase. These mechanisms provide an explanation for hypoglycemia caused by mutations of GDH in children.


Journal of Neurochemistry | 2002

Astrocyte leucine metabolism: significance of branched-chain amino acid transamination.

Marc Yudkoff; Yevgeny Daikhin; Lev Grunstein; Ilana Nissim; Janet Stern; David Pleasure; Itzhak Nissim

Abstract: We studied astrocytic metabolism of leucine, which in brain is a major donor of nitrogen for the synthesis of glutamate and glutamine. The uptake of leucine into glia was rapid, with a Vmax of 53.6 ± 3.2 nmol/mg of protein/min and a Km of 449.2 ± 94.9 µM. Virtually all leucine transport was found to be Na+ independent. Astrocytic accumulation of leucine was much greater (3×) in the presence of α‐aminooxyacetic acid (5 mM), an inhibitor of transamination reactions, suggesting that the glia rapidly transaminate leucine to α‐ketoisocaproic acid (KIC), which they then release into the extracellular fluid. This inference was confirmed by the direct measurement of KIC release to the medium when astrocytes were incubated with leucine. Approximately 70% of the leucine that the glia cleared from the medium was released as the keto acid. The apparent Km for leucine conversion to extracellular KIC was a medium [leucine] of 58 µM with a Vmax of ∼2.0 nmol/mg of protein/min. The transamination of leucine is bidirectional (leucine + α‐ketoglutarate ? KIC + glutamate) in astrocytes, but flux from leucine → glutamate is more active than that from glutamate → leucine. These data underscore the significance of leucine handling to overall brain nitrogen metabolism. The release of KIC from glia to the extracellular fluid may afford a mechanism for the “buffering” of glutamate in neurons, which would consume this neurotransmitter in the course of reaminating KIC to leucine.


Journal of Neuroscience Research | 2001

Ketogenic diet, amino acid metabolism, and seizure control.

Marc Yudkoff; Yevgeny Daikhin; Ilana Nissim; Adam Lazarow; Itzhak Nissim

The ketogenic diet has been utilized for many years as an adjunctive therapy in the management of epilepsy, especially in those children for whom antiepileptic drugs have not permitted complete relief. The biochemical basis of the dietary effect is unclear. One possibility is that the diet leads to alterations in the metabolism of brain amino acids, most importantly glutamic acid, the major excitatory neurotransmitter. In this review, we explore the theme. We present evidence that ketosis can lead to the following: 1) a diminution in the rate of glutamate transamination to aspartate that occurs because of reduced availability of oxaloacetate, the ketoacid precursor to aspartate; 2) enhanced conversion of glutamate to GABA; and 3) increased uptake of neutral amino acids into the brain. Transport of these compounds involves an uptake system that exchanges the neutral amino acid for glutamine. The result is increased release from the brain of glutamate, particularly glutamate that had been resident in the synaptic space, in the form of glutamine. These putative adaptations of amino acid metabolism occur as the system evolves from a glucose‐based fuel economy to one that utilizes ketone bodies as metabolic substrates. We consider mechanisms by which such changes might lead to the antiepileptic effect.


Neurochemistry International | 2005

Response of brain amino acid metabolism to ketosis.

Marc Yudkoff; Yevgeny Daikhin; Ilana Nissim; Oksana Horyn; Adam Lazarow; Bohdan Luhovyy; Suzanne Wehrli; Itzhak Nissim

Our objective was to study brain amino acid metabolism in response to ketosis. The underlying hypothesis is that ketosis is associated with a fundamental change of brain amino acid handling and that this alteration is a factor in the anti-epileptic effect of the ketogenic diet. Specifically, we hypothesize that brain converts ketone bodies to acetyl-CoA and that this results in increased flux through the citrate synthetase reaction. As a result, oxaloacetate is consumed and is less available to the aspartate aminotransferase reaction; therefore, less glutamate is converted to aspartate and relatively more glutamate becomes available to the glutamine synthetase and glutamate decarboxylase reactions. We found in a mouse model of ketosis that the concentration of forebrain aspartate was diminished but the concentration of acetyl-CoA was increased. Studies of the incorporation of 13C into glutamate and glutamine with either [1-(13)C]glucose or [2-(13)C]acetate as precursor showed that ketotic brain metabolized relatively less glucose and relatively more acetate. When the ketotic mice were administered both acetate and a nitrogen donor, such as alanine or leucine, they manifested an increased forebrain concentration of glutamine and GABA. These findings supported the hypothesis that in ketosis there is greater production of acetyl-CoA and a consequent alteration in the equilibrium of the aspartate aminotransferase reaction that results in diminished aspartate production and potentially enhanced synthesis of glutamine and GABA.


Journal of Neuroscience Research | 2001

Brain amino acid metabolism and ketosis

Marc Yudkoff; Yevgeny Daikhin; Ilana Nissim; Adam Lazarow; Itzhak Nissim

The relationship between ketosis and brain amino acid metabolism was studied in mice that consumed a ketogenic diet (>90% of calories as lipid). After 3 days on the diet the blood concentration of 3‐OH‐butyrate was ∼5 mmol/l (control = 0.06–0.1 mmol/l). In forebrain and cerebellum the concentration of 3‐OH‐butyrate was ∼10‐fold higher than control. Brain [citrate] and [lactate] were greater in the ketotic animals. The concentration of whole brain free coenzyme A was lower in ketotic mice. Brain [aspartate] was reduced in forebrain and cerebellum, but [glutamate] and [glutamine] were unchanged. When [15N]leucine was administered to follow N metabolism, this labeled amino acid accumulated to a greater extent in the blood and brain of ketotic mice. Total brain aspartate (14N + 15N) was reduced in the ketotic group. The [15N]aspartate/[15N]glutamate ratio was lower in ketotic animals, consistent with a shift in the equilibrium of the aspartate aminotransferase reaction away from aspartate. Label in [15N]GABA and total [15N]GABA was increased in ketotic animals. When the ketotic animals were injected with glucose, there was a partial blunting of ketoacidemia within 40 min as well as an increase of brain [aspartate], which was similar to control. When [U‐13C6]glucose was injected, the 13C label appeared rapidly in brain lactate and in amino acids. Label in brain [U‐13C3]lactate was greater in the ketotic group. The ratio of brain 13C‐amino acid/13C‐lactate, which reflects the fraction of amino acid carbon that is derived from glucose, was much lower in ketosis, indicating that another carbon source, i.e., ketone bodies, were precursor to aspartate, glutamate, glutamine and GABA. J. Neurosci. Res. 66:272–281, 2001.


Pediatric Research | 2008

N-carbamylglutamate Markedly Enhances Ureagenesis in N-acetylglutamate Deficiency and Propionic Acidemia as Measured by Isotopic Incorporation and Blood Biomarkers

Mendel Tuchman; Ljubica Caldovic; Yevgeny Daikhin; Oksana Horyn; Ilana Nissim; Itzhak Nissim; Mark S. Korson; Barbara K. Burton; Marc Yudkoff

N-acetylglutamate (NAG) is an endogenous essential cofactor for conversion of ammonia to urea in the liver. Deficiency of NAG causes hyperammonemia and occurs because of inherited deficiency of its producing enzyme, NAG synthase (NAGS), or interference with its function by short fatty acid derivatives. N-carbamylglutamate (NCG) can ameliorate hyperammonemia from NAGS deficiency and propionic and methylmalonic acidemia. We developed a stable isotope 13C tracer method to measure ureagenesis and to evaluate the effect of NCG in humans. Seventeen healthy adults were investigated for the incorporation of 13C label into urea. [13C]urea appeared in the blood within minutes, reaching maximum by 100 min, whereas breath 13CO2 reached a maximum by 60 min. A patient with NAGS deficiency showed very little urea labeling before treatment with NCG and normal labeling thereafter. Correspondingly, plasma levels of ammonia and glutamine decreased markedly and urea tripled after NCG treatment. Similarly, in a patient with propionic acidemia, NCG treatment resulted in a marked increase in urea labeling and decrease in glutamine, alanine, and glycine. These results provide a reliable method for measuring the effect of NCG on nitrogen metabolism and strongly suggest that NCG could be an effective treatment for inherited and secondary NAGS deficiency.


Journal of Neurochemistry | 2002

Effects of ketone bodies on astrocyte amino acid metabolism.

Marc Yudkoff; Yevgeny Daikhin; Ilana Nissim; Renee Grunstein; Itzhak Nissim

Abstract: The effects of acetoacetate and 3‐hydroxybutyrate on glial amino acid metabolism were studied in primary cultures of astrocytes. The exchange of nitrogen among amino acids was measured with 15N as a metabolic probe and gas chromatography‐mass spectrometry as a tool with which to quantify isotope abundance. Addition of either acetoacetate or 3‐hydroxybutyrate (5 mM) to the incubation medium did not alter the initial rate of appearance of [15N]glutamate in the glia, but it did inhibit transamination of glutamate to [15N]aspartate. Addition of acetoacetate also inhibited formation of [2‐15N]glutamine, but 3‐hydroxybutyrate had a stimulatory effect. The presence in the medium of sodium acetate (5 mM) was also associated with diminished production of [15N]aspartate and [2‐15N]glutamine with [15N]glutamate as precursor. Studies with [2‐15N]glutamine as precursor indicated that treatment of the astrocytes with ketone bodies did not alter flux through the glutaminase pathway. Nor did the presence of the ketone bodies reduce significantly the flux of nitrogen from [15N]GABA to [2‐15N]glutamine when the former species served as a metabolic tracer. The concentration of internal citrate increased in the presence of acetoacetate, 3‐hydroxybutyrate, and acetate. Studies with purified sheep brain glutamine synthetase showed that citrate inhibited this enzyme. These findings are considered in terms of the known anticonvulsant effect of a ketogenic diet.

Collaboration


Dive into the Ilana Nissim's collaboration.

Top Co-Authors

Avatar

Marc Yudkoff

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Itzhak Nissim

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Yevgeny Daikhin

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Oksana Horyn

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Adam Lazarow

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Bohdan Luhovyy

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suzanne Wehrli

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Changhong Li

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge