Marc Yudkoff
Children's Hospital of Philadelphia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marc Yudkoff.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Ralph J. DeBerardinis; Anthony Mancuso; Evgueni Daikhin; Ilana Nissim; Marc Yudkoff; Suzanne Wehrli; Craig B. Thompson
Tumor cell proliferation requires rapid synthesis of macromolecules including lipids, proteins, and nucleotides. Many tumor cells exhibit rapid glucose consumption, with most of the glucose-derived carbon being secreted as lactate despite abundant oxygen availability (the Warburg effect). Here, we used 13C NMR spectroscopy to examine the metabolism of glioblastoma cells exhibiting aerobic glycolysis. In these cells, the tricarboxylic acid (TCA) cycle was active but was characterized by an efflux of substrates for use in biosynthetic pathways, particularly fatty acid synthesis. The success of this synthetic activity depends on activation of pathways to generate reductive power (NADPH) and to restore oxaloacetate for continued TCA cycle function (anaplerosis). Surprisingly, both these needs were met by a high rate of glutamine metabolism. First, conversion of glutamine to lactate (glutaminolysis) was rapid enough to produce sufficient NADPH to support fatty acid synthesis. Second, despite substantial mitochondrial pyruvate metabolism, pyruvate carboxylation was suppressed, and anaplerotic oxaloacetate was derived from glutamine. Glutamine catabolism was accompanied by secretion of alanine and ammonia, such that most of the amino groups from glutamine were lost from the cell rather than incorporated into other molecules. These data demonstrate that transformed cells exhibit a high rate of glutamine consumption that cannot be explained by the nitrogen demand imposed by nucleotide synthesis or maintenance of nonessential amino acid pools. Rather, glutamine metabolism provides a carbon source that facilitates the cells ability to use glucose-derived carbon and TCA cycle intermediates as biosynthetic precursors.
Proceedings of the National Academy of Sciences of the United States of America | 2008
David R. Wise; Ralph J. DeBerardinis; Anthony Mancuso; Nabil Sayed; Xiao Yong Zhang; Harla K. Pfeiffer; Ilana Nissim; Evgueni Daikhin; Marc Yudkoff; Steven B. McMahon; Craig B. Thompson
Mammalian cells fuel their growth and proliferation through the catabolism of two main substrates: glucose and glutamine. Most of the remaining metabolites taken up by proliferating cells are not catabolized, but instead are used as building blocks during anabolic macromolecular synthesis. Investigations of phosphoinositol 3-kinase (PI3K) and its downstream effector AKT have confirmed that these oncogenes play a direct role in stimulating glucose uptake and metabolism, rendering the transformed cell addicted to glucose for the maintenance of survival. In contrast, less is known about the regulation of glutamine uptake and metabolism. Here, we report that the transcriptional regulatory properties of the oncogene Myc coordinate the expression of genes necessary for cells to engage in glutamine catabolism that exceeds the cellular requirement for protein and nucleotide biosynthesis. A consequence of this Myc-dependent glutaminolysis is the reprogramming of mitochondrial metabolism to depend on glutamine catabolism to sustain cellular viability and TCA cycle anapleurosis. The ability of Myc-expressing cells to engage in glutaminolysis does not depend on concomitant activation of PI3K or AKT. The stimulation of mitochondrial glutamine metabolism resulted in reduced glucose carbon entering the TCA cycle and a decreased contribution of glucose to the mitochondrial-dependent synthesis of phospholipids. These data suggest that oncogenic levels of Myc induce a transcriptional program that promotes glutaminolysis and triggers cellular addiction to glutamine as a bioenergetic substrate.
Human Gene Therapy | 2002
Steven E. Raper; Marc Yudkoff; Narendra Chirmule; Guangping Gao; Fred Nunes; Ziv J. Haskal; Emma E. Furth; Kathleen J. Propert; Michael B. Robinson; Susan Magosin; Heather Simoes; Lisa Speicher; Joseph V. Hughes; John Tazelaar; Nelson A. Wivel; James M. Wilson; Mark L. Batshaw
Ornithine transcarbamylase deficiency (OTCD) is an inborn error of urea synthesis that has been considered as a model for liver-directed gene therapy. Current treatment has failed to avert a high mortality or morbidity from hyperammonemic coma. Restoration of enzyme activity in the liver should suffice to normalize metabolism. An E1- and E4-deleted vector based on adenovirus type 5 and containing human OTC cDNA was infused into the right hepatic artery in adults with partial OTCD. Six cohorts of three or four subjects received 1/2 log-increasing doses of vector from 2 x 10(9) to 6 x 10(11) particles/kg. This paper describes the experience in all but the last subject, who experienced lethal complications. Adverse effects included a flu-like episode and a transient rise in temperature, hepatic transaminases, thrombocytopenia, and hypophosphatemia. Humoral responses to the vector were seen in all research subjects and a proliferative cellular response to the vector developed in apparently naive subjects. In situ hybridization studies showed transgene expression in hepatocytes of 7 of 17 subjects. Three of 11 subjects with symptoms related to OTCD showed modest increases in urea cycle metabolic activity that were not statistically significant. The low levels of gene transfer detected in this trial suggest that at the doses tested, significant metabolic correction did not occur.
Nature Medicine | 1999
Barbara S. Slusher; James J. Vornov; Ajit G. Thomas; Patricia D. Hurn; Izumi Harukuni; Anish Bhardwaj; Richard J. Traystman; Michael B. Robinson; Paul Britton; X.-C. May Lu; Frank C. Tortella; Krystyna M. Wozniak; Marc Yudkoff; Beth M. Potter; Paul F. Jackson
We describe here a new strategy for the treatment of stroke, through the inhibition of NAALADase (N-acetylated-α-linked-acidic dipeptidase), an enzyme responsible for the hydrolysis of the neuropeptide NAAG (N-acetyl-aspartyl-glutamate) to N-acetyl-aspartate and glutamate. We demonstrate that the newly described NAALADase inhibitor 2-PMPA (2-(phosphonomethyl)pentanedioic acid) robustly protects against ischemic injury in a neuronal culture model of stroke and in rats after transient middle cerebral artery occlusion. Consistent with inhibition of NAALADase, we show that 2-PMPA increases NAAG and attenuates the ischemia-induced rise in glutamate. Both effects could contribute to neuroprotection. These data indicate that NAALADase inhibition may have use in neurological disorders in which excessive excitatory amino acid transmission is pathogenic.
Glia | 1997
Marc Yudkoff
The synthesis of brain glutamate requires an amino group donor that is efficiently transported into the brain and that is readily transaminated. The branched‐chain amino acids (BCAA), particularly leucine, play this important role. The uptake of leucine across the blood‐brain barrier is faster than any other amino acid. Studies with 15N‐labelled branched‐chain amino acids indicate that at least one third of the amino groups of brain glutamate are derived from the BCAA; leucine alone probably donates at least 25%. Transamination occurs in large measure in astrocytes, which articulate closely with the brain capillaries across which amino acids must past as they are transported from the blood. After using BCAA nitrogen for glutamate synthesis, the astrocytes may release the branched‐chain ketoacid, e.g., α‐ketoisocaproate, to the extracellular fluid, from which it can be taken up in a neuronal compartment and there converted back to leucine. This process, which consumes an equimolar amount of glutamic acid, may provide a mechanism for the “buffering” of brain glutamate if levels of this excitatory (and potentially toxic) neurotransmitter become elevated. Leucine so formed in neurons is released to the extracellular fluid and transported back to the astrocytes, thereby completing a “leucine‐glutamate cycle.” GLIA 21:92–98, 1997.
Journal of Neurochemistry | 1990
Marc Yudkoff; David Pleasure; Lynn Cregar; Zhi-Ping Lin; Ilana Nissim; Janet Stern; Itzhak Nissim
Abstract: The incorporation of [15N]glutamic acid into glutathione was studied in primary cultures of astrocytes. Turnover of the intracellular glutathione pool was rapid, attaining a steady state value of 30.0 atom% excess in 180 min. The intracellular glutathione concentration was high (20–40 nmol/mg protein) and the tripeptide was released rapidly into the incubation medium. Although labeling of glutathione (atom% excess) with [15N]glutamate occurred rapidly, little accumulation of 15N in glutathione was noted during the incubation compared with 15N in aspartate, glutamine, and alanine. Glutathione turnover was stimulated by incubating the astrocytes with diethylmaleate, an electrophile that caused a partial depletion of the glutathione pool(s). Diethylmaleate treatment also was associated with significant reductions of intraastrocytic glutamate, glycine, and cysteine, i.e., the constituents of glutathione. Glutathione synthesis could be stimulated by supplementing the steady‐state incubation medium with 0.05 mM L‐cysteine, such treatment again partially depleting intraastrocytic glutamate and causing significant reductions of 15N labeling of both alanine and glutamine, suggesting that glutamate had been diverted from the synthesis of these amino acids and toward the formation of glutathione. The current study underscores both the intensity of glutathione turnover in astrocytes and the relationship of this turnover to the metabolism of glutamate and other amino acids.
Molecular Genetics and Metabolism | 2008
Mendel Tuchman; Brendan Lee; Uta Lichter-Konecki; Marshall L. Summar; Marc Yudkoff; Stephen D. Cederbaum; Douglas S. Kerr; George A. Diaz; Margaretta R. Seashore; Hye Seung Lee; Robert McCarter; Jeffrey P. Krischer; Mark L. Batshaw
Inherited urea cycle disorders comprise eight disorders (UCD), each caused by a deficiency of one of the proteins that is essential for ureagenesis. We report on a cross-sectional investigation to determine clinical and laboratory characteristics of patients with UCD in the United States. The data used for the analysis was collected at the time of enrollment of individuals with inherited UCD into a longitudinal observation study. The study has been conducted by the Urea Cycle Disorders Consortium within the Rare Diseases Clinical Research Network (RDCRN) funded by the National Institutes of Health. One-hundred eighty-three patients were enrolled into the study. Ornithine transcarbamylase (OTC) deficiency was the most frequent disorder (55%), followed by argininosuccinic aciduria (16%) and citrullinemia (14%). Seventy-nine percent of the participants were white (16% Latinos), and 6% were African American. Intellectual and developmental disabilities were reported in 39% with learning disabilities (35%) and half had abnormal neurological examination. Sixty-three percent were on a protein restricted diet, 37% were on Na-phenylbutyrate and 5% were on Na-benzoate. Forty-five percent of OTC deficient patients were on L-citrulline, while most patients with citrullinemia (58%) and argininosuccinic aciduria (79%) were on L-arginine. Plasma levels of branched-chain amino acids were reduced in patients treated with ammonia scavenger drugs. Plasma glutamine levels were higher in proximal UCD and in neonatal type disease. The RDCRN allows comprehensive analyses of rare inherited UCD, their frequencies and current medical practices.
Journal of Biological Chemistry | 2003
Changhong Li; Habiba Najafi; Yevgeny Daikhin; Ilana Nissim; Heather W. Collins; Marc Yudkoff; Franz M. Matschinsky; Charles A. Stanley
Glutamate dehydrogenase (GDH) is regulated by both positive (leucine and ADP) and negative (GTP and ATP) allosteric factors. We hypothesized that the phosphate potential of β-cells regulates the sensitivity of leucine stimulation. These predictions were tested by measuring leucine-stimulated insulin secretion in perifused rat islets following glucose depletion and by tracing the nitrogen flux of [2-15N]glutamine using stable isotope techniques. The sensitivity of leucine stimulation was enhanced by long time (120-min) energy depletion and inhibited by glucose pretreatment. After limited 50-min glucose depletion, leucine, not α-ketoisocaproate, failed to stimulate insulin release. β-Cells sensitivity to leucine is therefore proposed to be a function of GDH activation. Leucine increased the flux through GDH 3-fold compared with controls while causing insulin release. High glucose inhibited flux through both glutaminase and GDH, and leucine was unable to override this inhibition. These results clearly show that leucine induced the secretion of insulin by augmenting glutaminolysis through activating glutaminase and GDH. Glucose regulates β-cell sensitivity to leucine by elevating the ratio of ATP and GTP to ADP and Pi and thereby decreasing the flux through GDH and glutaminase. These mechanisms provide an explanation for hypoglycemia caused by mutations of GDH in children.
Journal of Neurochemistry | 2002
Marc Yudkoff; Yevgeny Daikhin; Lev Grunstein; Ilana Nissim; Janet Stern; David Pleasure; Itzhak Nissim
Abstract: We studied astrocytic metabolism of leucine, which in brain is a major donor of nitrogen for the synthesis of glutamate and glutamine. The uptake of leucine into glia was rapid, with a Vmax of 53.6 ± 3.2 nmol/mg of protein/min and a Km of 449.2 ± 94.9 µM. Virtually all leucine transport was found to be Na+ independent. Astrocytic accumulation of leucine was much greater (3×) in the presence of α‐aminooxyacetic acid (5 mM), an inhibitor of transamination reactions, suggesting that the glia rapidly transaminate leucine to α‐ketoisocaproic acid (KIC), which they then release into the extracellular fluid. This inference was confirmed by the direct measurement of KIC release to the medium when astrocytes were incubated with leucine. Approximately 70% of the leucine that the glia cleared from the medium was released as the keto acid. The apparent Km for leucine conversion to extracellular KIC was a medium [leucine] of 58 µM with a Vmax of ∼2.0 nmol/mg of protein/min. The transamination of leucine is bidirectional (leucine + α‐ketoglutarate ? KIC + glutamate) in astrocytes, but flux from leucine → glutamate is more active than that from glutamate → leucine. These data underscore the significance of leucine handling to overall brain nitrogen metabolism. The release of KIC from glia to the extracellular fluid may afford a mechanism for the “buffering” of glutamate in neurons, which would consume this neurotransmitter in the course of reaminating KIC to leucine.
Journal of Neurochemistry | 1988
Marc Yudkoff; Itzhak Nissim; David Pleasure
Abstract: The metabolism of glutamine was studied in cultured astrocytes by incubating these cells with [2‐15N]‐glutamine and using gas chromatography‐mass spectrometry to quantitate the transfer of 15N to other amino acids. We found that astrocytes simultaneously synthesize and consume [2‐15N]glutamine, with the respective synthetic and utilization rates being approximately equal (ca. 13.0 nmol min‐1 mg protein‐1). Considerable 15N was transferred to alanine and a significant amount to the essential amino acids leucine, tyrosine, and phenylalanine, the latter process denoting active reamination of cognate ketoacids. A net export of alanine into the medium was noted. Astrocyte glutamine utilization appeared to be mediated via both the phosphate‐activated glutaminase (PAG) pathway and the glutamine aminotransferase pathway, the activity of which was about half that of PAG. The glutamine concentration in the incubation medium determined whether net synthesis or utilization of this amino acid occurred. When glutamine was omitted from the medium, net synthesis occurred. When it was present at a high (5 mM) level, net consumption was observed. At a physiologic (0.5 mM) concentration, neither net synthesis nor consumption was noted, although the 15N data indicated that glutamine was actively metabolized. An implication of this work is that astrocytes clearly are capable of both synthesizing and utilizing glutamine, and current concepts of a glutamate‐glutamine cycle functioning stoichiometrically between astrocytes and neurons may be an oversimplification.