Ilaria Colzi
University of Florence
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ilaria Colzi.
Journal of Hazardous Materials | 2012
Sara Pignattelli; Ilaria Colzi; Antonella Buccianti; Lorenzo Cecchi; Miluscia Arnetoli; R. Monnanni; R. Gabbrielli; Cristina Gonnelli
This work investigates the element distribution in Silene paradoxa growing on the mine dump of Fenice Capanne (Tuscany, Italy). The accumulation of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in root apoplast and symplast and in shoot was assessed and compared to the levels of the same metals in the respective rizosphere soils, analyzing both the total and the phytoavailable fractions. Levels of As, Cu, Fe, Pb and Zn, were above toxicity thresholds in both soil and shoot samples. Inter- and intra-element correlations were analyzed in plant and soil using different statistical methods. Soil total and phytoavailable metal concentration were shown not to be dominant in determining metal accumulation by the plant, since no significant positive correlation was found between metal concentration in soils and plants. Moreover, results indicated that S. paradoxa was able to cope with the studied multi-metal contaminated soil excluding the elements from its tissues and preferentially accumulating them into the root compartment, thus suggesting this species as possible good candidate for phytostabilization purposes.
Plant Science | 2015
Nadia Bazihizina; Ilaria Colzi; Elisabetta Giorni; Stefano Mancuso; Cristina Gonnelli
This work investigated Cu-induced changes in photosynthetic activity in contrasting populations of Silene paradoxa L. A metallicolous Cu-tolerant population and a non-metallicolous sensitive population were grown in hydroponics and exposed to different CuSO4 treatments for different times. Copper accumulation, MDA concentrations, and several photosynthetic parameters were measured to assess different effects of Cu exposure on plants from the two populations. A more efficient ability to photosynthesize in the presence of Cu excess was showed by the Cu-tolerant population with respect to the sensitive one. Interestingly, Cu-imposed limitations were present not only at a different degree, but also of different nature in the two populations. In the tolerant population, the most limiting factor to photosynthesis seemed to be Cu-imposed stomatal closure, whereas Cu-mediated biochemical limitation was scarce and Cu-mediated reduction in mesophyll conductance almost non-existent. In the sensitive population, Cu largely affected all the measured parameters, so that its photosynthetic activity experienced any kind of limitation, diffusional and especially biochemical. The lower Cu concentrations accumulated in the tolerant plant could be one of the factors concurring to the reported differences in photosynthetic activity, but also a higher capacity of internal detoxification and compartmentalization of the metal could not be excluded.
Journal of Hazardous Materials | 2011
R. Barzanti; Ilaria Colzi; Miluscia Arnetoli; A. Gallo; Sara Pignattelli; R. Gabbrielli; Cristina Gonnelli
This work was planned for providing useful information about the possibility of using serpentine adapted plants for phytoextraction of cadmium, element scarcely represented in such metalliferous environment. To this aim, we investigated variation in cadmium tolerance, accumulation and translocation in three Alyssum plants with different phenotypes: Alyssum bertolonii, that is a serpentine endemic nickel hyperaccumulator, and two populations of Alyssum montanum, one adapted and one not adapted to serpentine soils. Plants were hydroponically cultivated in presence of increasing concentrations of CdSO(4) for two weeks. For the metal concentration used in the experiments, the three different Alyssum populations showed variation in cadmium tolerance, accumulation and content. The serpentine adapted population of A. montanum showed statistically higher cadmium tolerance and accumulation than A. bertolonii and the population of A. montanum not adapted to serpentine soil thus deserving to be investigated for phytoextraction purposes. Furthermore, as for the kinetic parameters of the cadmium uptake system, A. montanum serpentine population presented a low apparent K(m) value, suggesting a high affinity for this metal of its uptake system, whereas the V(max) values were not significantly different among the plants. Present data revealed metallicolous plants are also suitable for the phytoremediation of metals underrepresented in the environment of their initial origin. Nonetheless, field trials on real contaminated soils are essential.
Plant and Soil | 2015
Ilaria Colzi; Sara Pignattelli; Elisabetta Giorni; Alessio Papini; Cristina Gonnelli
Background and aimsCopper is one of the most important pollutants in mine-contaminated soils. This study tests the response in a sensitive population vs a tolerant one of the model species Silene paradoxa in order to understand the general mechanisms of tolerance at the micromorphological and ultrastructural level.MethodsTwo populations of Silene paradoxa were grown in hydroponics and exposed to different CuSO4 treatments. The roots were investigated with light, fluorescence and transmission electron microscope. Callose and lignin were spectrophotometrically determined.ResultsThe tolerant population constitutively possessed a higher amount of mucilage and was able to reduce the length of the zone between the apex and the first lignified tracheids. Callose production decreased. It did not show remarkable copper-induced ultrastructural modifications, apart from the presence of precipitates in the tangential walls. The sensitive population showed huge nucleoli with a spongy periphery in the central cylinder together with the presence of electrondense granules in the mitochondria. Plastids were rarely observed and generally very electrondense and elongated.Conclusionsn the copper tolerant population of S. paradoxa some of the root traits concurring to generate metal-excluding roots were suggested to be mucilage and lignin production and the reduction of the subapical root zone.
Environmental Science and Pollution Research | 2014
Ilaria Colzi; Sonia Rocchi; Mattia Rangoni; Massimo Del Bubba; Cristina Gonnelli
This work was planned for providing useful information about the use of excluder metallophytes for phytostabilization of soils contaminated also with elements scarcely represented in the metalliferous environment of origin. To this aim, we investigated tolerance and accumulation of several different elements in a metallicolous and a nonmetallicolous population of Silene paradoxa through a hydroponic experiment. S. paradoxa metallicolous population showed increased tolerance not only to all the metals highly represented in the environment of origin but also to some of those scarcely present. Therefore, our results deposed in favor of the occurrence of the co-tolerance phenomenon in S. paradoxa for some elements. Metal accumulation was higher in the roots than in the shoots and lower in the metallicolous population than in the nonmetallicolous one, thus showing tolerance mechanisms to be based largely on metal exclusion. Anyway, the relative contribution of avoidance and of internal tolerance to metal tolerance was shown to be element-dependent. Present data revealed that metallicolous plants can effectively posses metal co-tolerances, which deserve to be investigated; as such, plants can actually represent a precious and exploitable tool also for the phytostabilization of soils contaminated with elements underrepresented in the environment of their origin.
Environmental Pollution | 2016
Cosimo Taiti; Elisabetta Giorni; Ilaria Colzi; Sara Pignattelli; Nadia Bazihizina; Antonella Buccianti; Simone Luti; Luigia Pazzagli; Stefano Mancuso; Cristina Gonnelli
We investigated how the adaptation to metalliferous environments can influence the plant response to biotic stress. In a metallicolous and a non-metallicolous population of Silene paradoxa the induction of oxidative stress and the production of callose and volatiles were evaluated in the presence of copper and of the PAMP fungal protein cerato-platanin, separately and in combination. Our results showed incompatibility between the ordinary ROS-mediated response to fungal attack and the acquired mechanisms of preventing oxidative stress in the tolerant population. A similar situation was also demonstrated by the sensitive population growing in the presence of copper but, in this case, with a lack of certain responses, such as callose production. In addition, in terms of the joint behaviour of emitted volatiles, multivariate statistics showed that not only did the populations respond differently to the presence of copper or biotic stress, but also that the biotic and abiotic stresses interacted in different ways in the two populations. Our results demonstrated that the same incompatibility of hyperaccumulators in ROS-mediated biotic stress signals also seemed to be exhibited by the excluder metallophyte, but without the advantage of being able to rely on the elemental defence for plant protection from natural enemies.
Food Chemistry | 2017
Ilaria Colzi; Cosimo Taiti; Elettra Marone; Susanna Magnelli; Cristina Gonnelli; Stefano Mancuso
This work was performed to evaluate the possible application of PTR-ToF-MS technique in distinguishing between Coffea arabica (Arabica) and Coffea canephora var. robusta (Robusta) commercial stocks in each step of the processing chain (green beans, roasted beans, ground coffee, brews). volatile organic compounds (VOC) spectra from coffee samples of 7 Arabica and 6 Robusta commercial stocks were recorded and submitted to multivariate statistical analysis. Results clearly showed that, in each stage of the coffee processing, the volatile composition of coffee is highly influenced by the species. Actually, with the exception of green beans, PTR-ToF-MS technique was able to correctly recognize Arabica and Robusta samples. Particularly, among 134 tentatively identified VOCs, some masses (16 for roasted coffee, 12 for ground coffee and 12 for brewed coffee) were found to significantly discriminate the two species. Therefore, headspace VOC analyses was showed to represent a valuable tool to distinguish between Arabica and Robusta.
Scientific Reports | 2016
Elisa Masi; Marzena Ciszak; Ilaria Colzi; Lubomir Adamec; Stefano Mancuso
In this study the MEA (multielectrode array) system was used to record electrical responses of intact and halved traps, and other trap-free tissues of two aquatic carnivorous plants, Aldrovanda vesiculosa and Utricularia reflexa. They exhibit rapid trap movements and their traps contain numerous glands. Spontaneous generation of spikes with quite uniform shape, propagating across the recording area, has been observed for all types of sample. In the analysis of the electrical network, higher richer synchronous activity was observed relative to other plant species and organs previously described in the literature: indeed, the time intervals between the synchronized clusters (the inter-spike intervals) create organized patterns and the propagation times vary non-linearly with the distance due to this synchronization. Interestingly, more complex electrical activity was found in traps than in trap-free organs, supporting the hypothesis that the nature of the electrical activity may reflect the anatomical and functional complexity of different organs. Finally, the electrical activity of functionally different traps of Aldrovanda (snapping traps) and Utricularia (suction traps) was compared and some differences in the features of signal propagation were found. According to these results, a possible use of the MEA system for the study of different trap closure mechanisms is proposed.
Sensors and Actuators B-chemical | 2017
Shre Kumar Chatterjee; Saptarshi Das; Koushik Maharatna; Elisa Masi; Luisa Santopolo; Ilaria Colzi; Stefano Mancuso; Andrea Vitaletti
Plants monitor their surrounding environment and control their physiological functions by producing an electrical response. We recorded electrical signals from different plants by exposing them to Sodium Chloride (NaCl), Ozone (O3) and Sulfuric Acid (H2SO4) under laboratory conditions. After applying pre-processing techniques such as filtering and drift removal, we extracted few statistical features from the acquired plant electrical signals. Using these features, combined with different classification algorithms, we used a decision tree based multi-class classification strategy to identify the three different external chemical stimuli. We here present our exploration to obtain the optimum set of ranked feature and classifier combination that can separate a particular chemical stimulus from the incoming stream of plant electrical signals. The paper also reports an exhaustive comparison of similar feature based classification using the filtered and the raw plant signals, containing the high frequency stochastic part and also the low frequency trends present in it, as two different cases for feature extraction. The work, presented in this paper opens up new possibilities for using plant electrical signals to monitor and detect other environmental stimuli apart from NaCl, O3 and H2SO4 in future.
Science of The Total Environment | 2017
Federico Selvi; Elisa Carrari; Ilaria Colzi; Andrea Coppi; Cristina Gonnelli
Introduction of non-native trees is one of the major threats to ecosystem integrity and biodiversity. Stands of maritime pine (Pinus pinaster Ait.) introduced decades ago represent a threat to the specialized plant communities of serpentine outcrops in Italy. This study investigates the effects of such invasions at the community and species level, based on vegetation sampling in three selected sites with comparable environmental conditions. Pine cover caused a decrease of α-diversity by lowering the species evenness of the community, though species richness was not negatively affected. Compositional changes between the two habitats were significant but not clearly associated with a decrease in taxonomic distinctness in the pine stands. As many as nine indicator species were found in the open vegetation, along with the obligate endemics Odontarrhena bertolonii and Armeria denticulata. Both of them declined in the pine stands. Here, an increase in the phytoavailable nickel fraction was associated with a decrease in total nickel concentration in the soil, via mobilization of the metal caused by lowering of pH induced by the conifer litter. The nickel-hyperaccumulator O. bertolonii was able to maintain high metal concentrations in the shoots despite a decrease in root concentration, resulting in a higher shoot/root ratio in the pine stands (~20). Conversely, shoot/root ratio in the non-accumulator Plantago holosteum was <1 and not affected by the conifer, as well as its abundance in this anthropogenic habitat. Contrasting responses of the two species were likely due to their different sensitivity to modified light and soil conditions, whereas stability of shoot nickel-concentration in O. bertolonii did not support increased predation by natural enemies as one of the causes for its decline under the conifer. Progressive thinning of these stands is advocated to limit soil nickel mobilization and to restore a unique ecosystem with its endemic metallophytes.