Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilaria Lampronti is active.

Publication


Featured researches published by Ilaria Lampronti.


Phytomedicine | 2003

In vitro antiproliferative effects on human tumor cell lines of extracts from the Bangladeshi medicinal plant Aegle marmelos Correa

Ilaria Lampronti; Dino Martello; Nicoletta Bianchi; Monica Borgatti; Elisabetta Lambertini; Roberta Piva; Shaila Jabbar; M Shahabuddin Kabir Choudhuri; M. Tareq Hassan Khan; Roberto Gambari

In the present paper we show that extracts from Aegle marmelos Correa are able to inhibit the in vitro proliferation of human tumor cell lines, including the leukemic K562, T-lymphoid Jurkat, B-lymphoid Raji, erythroleukemic HEL, melanoma Colo38, and breast cancer MCF7 and MDA-MB-231 cell lines. Molecules present within the studied Aegle marmelos C. extracts were identified by gas-chromatography/mass-spectrometry analysis; three derivatives (butyl p-tolyl sulfide, 6-methyl-4-chromanone and butylated hydroxyanisole) were found to exhibit strong activity in inhibiting in vitro cell growth of human K562 cells. The antiproliferative activity of these compounds was found to be comparable to that of known antitumor agents, including cisplatin, chromomycin, cytosine arabinoside and 5-fluorouracil. In addition, the antiproliferative activity of butyl-p-tolyl sulfide, 6-methyl-4-chromanone and 5-methoxypsolaren was associated to activation of the differentiation pattern of K562 cells.


Tetrahedron Letters | 1998

Tetramethylguanidine (TMG)-catalyzed addition of dialkyl phosphites to α,β-unsaturated carbonyl compounds, alkenenitriles, aldehydes, ketones and imines

Daniele Simoni; Francesco Paolo Invidiata; Monica Manferdini; Ilaria Lampronti; Riccardo Rondanin; Marinella Roberti; Gian Piero Pollini

Abstract Tetramethylguanidine-catalyzed addition of dialkyl phosphites to α,β-unsaturated carbonyl compounds, alkenenitriles, aldehydes and ketones constitutes a practical route to a variety of phosphonate synthons. The very mild conditions employed, together with the short reaction times, make the procedure highly versatile and tolerant to a range of functionalities. The proposed methodology is also convenient for the preparation of α-aminophosphonates.


Chemistry & Biodiversity | 2008

Phytochemical Analysis and in vitro Antiviral Activities of the Essential Oils of Seven Lebanon Species

Monica R. Loizzo; Antoine M. Saab; Rosa Tundis; Giancarlo A. Statti; Francesco Menichini; Ilaria Lampronti; Roberto Gambari; Jindrich Cinatl; Hans Wilhelm Doerr

The chemical composition of the essential oils of Laurus nobilis, Juniperus oxycedrus ssp. oxycedrus, Thuja orientalis, Cupressus sempervirens ssp. pyramidalis, Pistacia palaestina, Salvia officinalis, and Satureja thymbra was determined by GC/MS analysis. Essential oils have been evaluated for their inhibitory activity against SARS‐CoV and HSV‐1 replication in vitro by visually scoring of the virus‐induced cytopathogenic effect post‐infection. L. nobilis oil exerted an interesting activity against SARS‐CoV with an IC50 value of 120 μg/ml and a selectivity index (SI) of 4.16. This oil was characterized by the presence of β‐ocimene, 1,8‐cineole, α‐pinene, and β‐pinene as the main constituents. J. oxycedrus ssp. oxycedrus oil, in which α‐pinene and β‐myrcene were the major constituents, revealed antiviral activity against HSV‐1 with an IC50 value of 200 μg/ml and a SI of 5.


European Journal of Haematology | 2003

Accumulation of gamma-globin mRNA in human erythroid cells treated with angelicin

Ilaria Lampronti; Nicoletta Bianchi; Monica Borgatti; Eitan Fibach; Eugenia Prus; Roberto Gambari

The aim of the present study was to determine whether angelicin is able to increase the expression of γ‐globin genes in human erythroid cells. Angelicin is structurally related to psoralens, a well‐known chemical class of photosensitizers used for their antiproliferative activity in treatment of different skin diseases (i.e., psoriasis and vitiligo). To verify the activity of angelicin, we employed two experimental cell systems, the human leukemic K562 cell line and the two‐phase liquid culture of human erythroid progenitors isolated from normal donors. The results of our investigation suggest that angelicin, compared with cytosine arabinoside, mithramycin and cisplatin, is a powerful inducer of erythroid differentiation and γ‐globin mRNA accumulation of human leukemia K562 cells. In addition, when normal human erythroid precursors were cultured in the presence of angelicin, increases of γ‐globin mRNA accumulation and fetal hemoglobin (HbF) production, even higher than those obtained using hydroxyurea, were detected. These results could have practical relevance, as pharmacologically‐mediated regulation of the expression of human γ‐globin genes, leading to HbF induction, is considered a potential therapeutic approach in hematological disorders, including β‐thalassemia and sickle cell anemia.


Journal of Biological Chemistry | 2003

Transcription Factor Decoy Molecules Based on a Peptide Nucleic Acid (PNA)-DNA Chimera Mimicking Sp1 Binding Sites

Monica Borgatti; Ilaria Lampronti; Alessandra Romanelli; Carlo Pedone; Michele Saviano; Nicoletta Bianchi; Carlo Mischiati; Roberto Gambari

Peptide nucleic acids (PNAs) are DNA-mimicking molecules in which the sugar-phosphate backbone is replaced by a pseudopeptide backbone composed of N-(2-aminoethyl)glycine units. We determined whether double-stranded molecules based on PNAs and PNA-DNA-PNA (PDP) chimeras could be capable of stable interactions with nuclear proteins belonging to the Sp1 transcription factor family and, therefore, could act as decoy reagents able to inhibit molecular interactions between Sp1 and DNA. Since the structure of PNA/PNA hybrids is very different from that of the DNA/DNA double helix, they could theoretically alter the molecular structure of the double-stranded PNA-DNA-PNA chimeras, perturbing interactions with specific transcription factors. We found that PNA-based hybrids do not inhibit Sp1/DNA interactions. In contrast, hybrid molecules based on PNA-DNA-PNA chimeras are very effective decoy molecules, encouraging further experiments focused on the possible use of these molecules for the development of potential agents for a decoy approach in gene therapy. In this respect, the finding that PDP-based decoy molecules are more resistant than DNA/DNA hybrids to enzymatic degradation appears to be of great interest. Furthermore, their resistance can even be improved after complexation with cationic liposomes to which PDP/PDP chimeras are able to bind by virtue of their internal DNA structure.


Biochemical Pharmacology | 2011

Targeting microRNAs involved in human diseases: a novel approach for modification of gene expression and drug development.

Roberto Gambari; Enrica Fabbri; Monica Borgatti; Ilaria Lampronti; Alessia Finotti; Eleonora Brognara; Nicoletta Bianchi; Alex Manicardi; Rosangela Marchelli; Roberto Corradini

The identification of all epigenetic modifications (i.e. DNA methylation, histone modifications and expression of noncoding RNAs such as microRNAs) involved in gene regulation is one of the major steps forward for understanding human biology in both normal and pathological conditions and for development of novel drugs. In this context, microRNAs play a pivotal role. This review article focuses on the involvement of microRNAs in the regulation of gene expression, on the possible role of microRNAs in the onset and development of human pathologies, and on the pharmacological alteration of the biological activity of microRNAs. RNA and DNA analogs, which can selectively target microRNAs using Watson-Crick base pairing schemes, provide a rational and efficient way to modulate gene expression. These compounds, termed antago-miR or anti-miR have been described in many examples in the recent literature and have proved to be able to perform regulatory as well as therapeutic functions. Among these, a still not fully exploited class is that of peptide nucleic acids (PNAs), promising tools for the inhibition of miRNA activity, with important applications in gene therapy and in drug development. PNAs targeting miR-122, miR-155 and miR-210 have already been developed and their biological effects studied both in vitro and in vivo.


Bioorganic & Medicinal Chemistry Letters | 2000

Synthesis and biological effects of a new series of 2-amino-3-benzoylthiophenes as allosteric enhancers of A1-adenosine receptor.

Pier Giovanni Baraldi; Abdel Naser Zaid; Ilaria Lampronti; Francesca Fruttarolo; Maria Giovanna Pavani; Mojgan Aghazadhe Tabrizi; John C. Shryock; Edward Leung; Romeo Romagnoli

New derivatives of PD 81,723, an allosteric enhancer of agonist binding to the A1-adenosine receptor, have been synthesized and evaluated in an intact cell assay. Compounds 3a, 3o and 3p appeared to be more potent than PD 81,723 and at a concentration of 0.1 microM caused significant reductions of cAMP content of CHO cells expressing the human A1-adenosine receptor. Compounds 4e and 4o appeared to be allosteric enhancers at a low concentration and antagonists at a higher concentration, whereas compounds 3c, 3g, 3s and 4l appeared to be weak antagonists that are also allosteric enhancers at the higher concentration of 10 microM.


Evidence-based Complementary and Alternative Medicine | 2009

Fetal Hemoglobin Inducers from the Natural World: A Novel Approach for Identification of Drugs for the Treatment of β-Thalassemia and Sickle-Cell Anemia

Nicoletta Bianchi; Cristina Zuccato; Ilaria Lampronti; Monica Borgatti; Roberto Gambari

The objective of this review is to present examples of lead compounds identified from biological material (fungi, plant extracts and agro-industry material) and of possible interest in the field of a pharmacological approach to the therapy of β-thalassemia using molecules able to stimulate production of fetal hemoglobin (HbF) in adults. Concerning the employment of HbF inducers as potential drugs for pharmacological treatment of β-thalassemia, the following conclusions can be reached: (i) this therapeutic approach is reasonable, on the basis of the clinical parameters exhibited by hereditary persistence of fetal hemoglobin patients, (ii) clinical trials (even if still limited) employing HbF inducers were effective in ameliorating the symptoms of β-thalassemia patients, (iii) good correlation of in vivo and in vitro results of HbF synthesis and γ-globin mRNA accumulation indicates that in vitro testing might be predictive of in vivo responses and (iv) combined use of different inducers might be useful to maximize HbF, both in vitro and in vivo. In this review, we present three examples of HbF inducers from the natural world: (i) angelicin and linear psoralens, contained in plant extracts from Angelica arcangelica and Aegle marmelos, (ii) resveratrol, a polyphenol found in grapes and several plant extracts and (iii) rapamycin, isolated from Streptomyces hygroscopicus.


European Journal of Haematology | 2006

Effects of rapamycin on accumulation of α-, β- and γ-globin mRNAs in erythroid precursor cells from β-thalassaemia patients

Eitan Fibach; Nicoletta Bianchi; Monica Borgatti; Cristina Zuccato; Alessia Finotti; Ilaria Lampronti; Eugenia Prus; Carlo Mischiati; Roberto Gambari

Abstract:  We studied the effects of rapamycin on cultures of erythroid progenitors derived from the peripheral blood of 10 β‐thalassaemia patients differing widely with respect to their potential to produce foetal haemoglobin (HbF). For this, we employed the two‐phase liquid culture procedure for growing erythroid progenitors, high performance liquid chromatography for analysis of HbF production and reverse transcription polymerase chain reaction for quantification of the accumulation of globin mRNAs. The results demonstrated that rapamycin induced an increase of HbF in cultures from all the β‐thalassaemia patients studied and an increase of their overall Hb content/cell. The inducing effect of rapamycin was restricted to γ‐globin mRNA accumulation, being only minor for β‐globin and none for α‐globin mRNAs. The ability of rapamycin to preferentially increase γ‐globin mRNA content and production of HbF in erythroid precursor cells from β‐thalassaemia patients is of great importance as this agent (also known as sirolimus or rapamune) is already in clinical use as an anti‐rejection agent following kidney transplantation. These data suggest that rapamycin warrants further evaluation as a potential therapeutic drug in β‐thalassaemia and sickle cell anaemia.


International Immunopharmacology | 2008

Pyrogallol, an active compound from the medicinal plant Emblica officinalis, regulates expression of pro-inflammatory genes in bronchial epithelial cells

Elena Nicolis; Ilaria Lampronti; Maria Cristina Dechecchi; Monica Borgatti; Anna Tamanini; Nicoletta Bianchi; Valentino Bezzerri; Irene Mancini; Maria Grazia Giri; Paolo Rizzotti; Roberto Gambari; Giulio Cabrini

The most relevant cause of morbidity and mortality in cystic fibrosis (CF) patients is the lung pathology characterized by chronic infection and inflammation sustained mainly by Pseudomonas aeruginosa (P. aeruginosa). Innovative pharmacological approaches to control the excessive inflammatory process in the lung of CF patients are thought to be beneficial to reduce the extensive airway tissue damage. Medicinal plants from the so-called traditional Asian medicine are attracting a growing interest because of their potential efficacy and safety. Due to the presence of different active compounds in each plant extract, understanding the effect of each component is important to pursue selective and reproducible applications. Extracts from Emblica officinalis (EO) were tested in IB3-1 CF bronchial epithelial cells exposed to the P. aeruginosa laboratory strain PAO1. EO strongly inhibited the PAO1-dependent expression of the neutrophil chemokines IL-8, GRO-alpha, GRO-gamma, of the adhesion molecule ICAM-1 and of the pro-inflammatory cytokine IL-6. Pyrogallol, one of the compounds extracted from EO, inhibited the P. aeruginosa-dependent expression of these pro-inflammatory genes similarly to the whole EO extract, whereas a second compound purified from EO, namely 5-hydroxy-isoquinoline, had no effect. These results identify Pyrogallol as an active compound responsible for the anti-inflammatory effect of EO and suggest to extend the investigation in pre-clinical studies in airway animal models in vivo, to test the efficacy and safety of this molecule in CF chronic lung inflammatory disease.

Collaboration


Dive into the Ilaria Lampronti's collaboration.

Top Co-Authors

Avatar

Roberto Gambari

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giulio Cabrini

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge