Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ildiko Toth is active.

Publication


Featured researches published by Ildiko Toth.


Journal of Virology | 2009

HLA-B57/B*5801 Human Immunodeficiency Virus Type 1 Elite Controllers Select for Rare Gag Variants Associated with Reduced Viral Replication Capacity and Strong Cytotoxic T-Lymphotye Recognition

Toshiyuki Miura; Mark A. Brockman; Arne Schneidewind; Michael A. Lobritz; Florencia Pereyra; Almas Rathod; Brian L. Block; Zabrina L. Brumme; Chanson J. Brumme; Brett Baker; Alissa C. Rothchild; Bin Li; Alicja Trocha; Emily Cutrell; Nicole Frahm; Christian Brander; Ildiko Toth; Eric J. Arts; Todd M. Allen; Bruce D. Walker

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) elite controllers (EC) maintain viremia below the limit of commercial assay detection (<50 RNA copies/ml) in the absence of antiviral therapy, but the mechanisms of control remain unclear. HLA-B57 and the closely related allele B*5801 are particularly associated with enhanced control and recognize the same Gag240-249 TW10 epitope. The typical escape mutation (T242N) within this epitope diminishes viral replication capacity in chronically infected persons; however, little is known about TW10 epitope sequences in residual replicating viruses in B57/B*5801 EC and the extent to which mutations within this epitope may influence steady-state viremia. Here we analyzed TW10 in a total of 50 B57/B*5801-positive subjects (23 EC and 27 viremic subjects). Autologous plasma viral sequences from both EC and viremic subjects frequently harbored the typical cytotoxic T-lymphocyte (CTL)-selected mutation T242N (15/23 sequences [65.2%] versus 23/27 sequences [85.1%], respectively; P = 0.18). However, other unique mutants were identified in HIV controllers, both within and flanking TW10, that were associated with an even greater reduction in viral replication capacity in vitro. In addition, strong CTL responses to many of these unique TW10 variants were detected by gamma interferon-specific enzyme-linked immunospot assay. These data suggest a dual mechanism for durable control of HIV replication, consisting of viral fitness loss resulting from CTL escape mutations together with strong CD8 T-cell immune responses to the arising variant epitopes.


Journal of Virology | 2009

Protective HLA Class I Alleles That Restrict Acute-Phase CD8+ T-Cell Responses Are Associated with Viral Escape Mutations Located in Highly Conserved Regions of Human Immunodeficiency Virus Type 1

Yaoyu E. Wang; Bin Li; Jonathan M. Carlson; Hendrik Streeck; Adrianne D. Gladden; Robert Goodman; Arne Schneidewind; Karen A. Power; Ildiko Toth; Nicole Frahm; Galit Alter; Christian Brander; Mary Carrington; Bruce D. Walker; Marcus Altfeld; David Heckerman; Todd M. Allen

ABSTRACT The control of human immunodeficiency virus type 1 (HIV-1) associated with particular HLA class I alleles suggests that some CD8+ T-cell responses may be more effective than others at containing HIV-1. Unfortunately, substantial diversities in the breadth, magnitude, and function of these responses have impaired our ability to identify responses most critical to this control. It has been proposed that CD8 responses targeting conserved regions of the virus may be particularly effective, since the development of cytotoxic T-lymphocyte (CTL) escape mutations in these regions may significantly impair viral replication. To address this hypothesis at the population level, we derived near-full-length viral genomes from 98 chronically infected individuals and identified a total of 76 HLA class I-associated mutations across the genome, reflective of CD8 responses capable of selecting for sequence evolution. The majority of HLA-associated mutations were found in p24 Gag, Pol, and Nef. Reversion of HLA-associated mutations in the absence of the selecting HLA allele was also commonly observed, suggesting an impact of most CTL escape mutations on viral replication. Although no correlations were observed between the number or location of HLA-associated mutations and protective HLA alleles, limiting the analysis to mutations selected by acute-phase immunodominant responses revealed a strong positive correlation between mutations at conserved residues and protective HLA alleles. These data suggest that control of HIV-1 may be associated with acute-phase CD8 responses capable of selecting for viral escape mutations in highly conserved regions of the virus, supporting the inclusion of these regions in the design of an effective vaccine.


Journal of Virology | 2010

Leukocyte Immunoglobulin-Like Receptors Maintain Unique Antigen-Presenting Properties of Circulating Myeloid Dendritic Cells in HIV-1-Infected Elite Controllers

Jinghe Huang; Patrick S. Burke; Thai Duong Hong Cung; Florencia Pereyra; Ildiko Toth; Bruce D. Walker; Luis Borges; Mathias Lichterfeld; Xu G. Yu

ABSTRACT Elite controllers maintain undetectable levels of HIV-1 replication in the absence of antiretroviral therapy, but the correlates of immune protection in this patient population are ill defined. Here, we demonstrate that in comparison to patients with progressive HIV-1 infection or healthy persons not infected with HIV-1, elite controllers have circulating myeloid dendritic cells with significantly increased antigen-presenting properties, while their ability to secrete proinflammatory cytokines is substantially diminished. This unique functional profile is associated with a distinct surface expression pattern of immunomodulatory leukocyte-immunoglobulin-like receptors (LILR) and a strong and selective upregulation of LILRB1 and LILRB3. Blockade of these two receptors by monoclonal antibodies or short interfering RNA (siRNA) abrogated the specific antigen-presenting properties of dendritic cells, implying an important regulatory role of these molecules. These data reveal previously unrecognized innate components of immune protection against HIV-1 in elite controllers and offer novel perspectives for the manipulation of host immunity for the prevention and treatment of HIV-1 infection.


Virology | 2011

Decreased Fc receptor expression on innate immune cells is associated with impaired antibody-mediated cellular phagocytic activity in chronically HIV-1 infected individuals

Anne-Sophie Dugast; Andrew Tonelli; Christoph T. Berger; Margaret E. Ackerman; Gaia Sciaranghella; Qingquan Liu; Magdalena Sips; Ildiko Toth; Alicja Piechocka-Trocha; Musie Ghebremichael; Galit Alter

In addition to neutralization, antibodies mediate other antiviral activities including antibody-dependent cellular phagocytosis (ADCP), antibody-dependent cellular cytotoxicity (ADCC), as well as complement deposition. While it is established that progressive HIV infection is associated with reduced ADCC and ADCP, the underlying mechanism for this loss of function is unknown. Here we report considerable changes in FcR expression over the course of HIV infection on both mDCs and monocytes, including elevated FcγRI expression in acute HIV infection and reduced expression of FcγRII and FcγRIIIa in chronic HIV infection. Furthermore, selective blockade of FcγRII alone was associated with a loss in ADCP activity, suggesting that FcγRII plays a central role in modulating ADCP. Overall, HIV infection is associated with a number of changes in FcR expression on phagocytic cells that are associated with changes in their ability to respond to antibody-opsonized targets, potentially contributing to a failure in viral clearance in progressive HIV-1 infection.


Journal of Virology | 2010

Soluble HLA-G Inhibits Myeloid Dendritic Cell Function in HIV-1 Infection by Interacting with Leukocyte Immunoglobulin-Like Receptor B2

Jinghe Huang; Patrick S. Burke; Yue Yang; Katherine Seiss; Jill Beamon; Thai Duong Hong Cung; Ildiko Toth; Florencia Pereyra; Mathias Lichterfeld; Xu G. Yu

ABSTRACT Dendritic cells represent a specialized class of professional antigen-presenting cells that are responsible for priming and maintaining antigen-specific effector cell responses and regulating immune activation by cytokine secretion. In HIV-1 infection, myeloid dendritic cells are highly dysfunctional, but mechanisms contributing to their functional alterations are not well defined. Here, we show that soluble molecules of the nonclassical major histocompatibility complex class Ib (MHC-Ib) antigen HLA-G are highly upregulated in the plasma during progressive HIV-1 infection, while levels of membrane-bound HLA-G surface expression on dendritic cells, monocytes, and T cells only slightly differ among HIV-1 progressors, HIV-1 elite controllers, and HIV-1-negative persons. These elevated levels of soluble HLA-G in progressive HIV-1 infection likely result from increased secretion of intracellularly stored HLA-G molecules in monocytes and dendritic cells and contribute to a functional disarray of dendritic cells by inhibiting their antigen-presenting properties, while simultaneously enhancing their secretion of proinflammatory cytokines. Interestingly, we observed that these immunoregulatory effects of soluble HLA-G were mainly mediated by interactions with the myelomonocytic HLA class I receptor leukocyte immunoglobulin-like receptor B2 (LILRB2; ILT4), while binding of soluble HLA-G to its alternative high-affinity receptor, LILRB1 (ILT2), appeared to be less relevant for its immunomodulatory functions on dendritic cells. Overall, these results demonstrate a critical role for soluble HLA-G in modulating the functional characteristics of professional antigen-presenting cells in progressive HIV-1 infection and suggest that soluble HLA-G might represent a possible target for immunotherapeutic interventions in HIV-1-infected persons.


Virology | 2010

MHC class I chain-related protein A shedding in chronic HIV-1 infection is associated with profound NK cell dysfunction

Anne Nolting; Anne-Sophie Dugast; Suzannah Rihn; Rutger Luteijn; Mary Carrington; Katherine Kane; Stephanie Jost; Ildiko Toth; Ellen H. Nagami; Gerd Faetkenheuer; Pia Hartmann; Marcus Altfeld; Galit Alter

Natural killer (NK) cells play a critical role in host defense against viral infections. However chronic HIV-1 infection is associated with an accumulation of dysfunctional NK cells, that poorly control viral replication. The underlying mechanisms for this NK cell mediated dysfunction are not understood. Certain tumors evade NK cell mediated detection by dampening NK cell activity through the downregulation of NKG2D, via the release of soluble NKG2D-ligands, resulting in a potent suppression of NK cell function. Here we show that chronic HIV-1 infection is associated with a specific defect in NKG2D-mediated NK cell activation, due to reduced expression and transcription of NKG2D. Reduced NKG2D expression was associated with elevated levels of the soluble form of the NKG2D-ligand, MICA, in patient sera, likely released by HIV+CD4+ T cells. Thus, like tumors, HIV-1 may indirectly suppress NK cell recognition of HIV-1-infected CD4+ T cells by enhancing NKG2D-ligand secretion into the serum resulting in a profound impairment of NK cell function.


Science Translational Medicine | 2017

Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller.

Natalia T. Freund; Haoqing Wang; Louise Scharf; Lilian Nogueira; Joshua A. Horwitz; Yotam Bar-On; Jovana Golijanin; Stuart A. Sievers; Devin Sok; Hui Cai; Julio C. Cesar Lorenzi; Ariel Halper-Stromberg; Ildiko Toth; Alicja Piechocka-Trocha; Harry B. Gristick; Marit J. van Gils; Rogier W. Sanders; Lai-Xi Wang; Michael S. Seaman; Dennis R. Burton; Anna Gazumyan; Bruce D. Walker; Anthony P. West; Pamela J. Bjorkman; Michel C. Nussenzweig

Three new potent neutralizing antibodies neutralize autologous HIV-1 strains and contribute to viral control in an HIV-1 controller. Antibodies can hold HIV-1 at an impasse Neutralizing antibodies put selective pressure on pathogens to mutate and escape from immune detection, which is one of the reasons why HIV-1 infection is difficult to contain. In this issue, Freund et al. studied samples spanning almost a decade from an individual who naturally controls HIV-1 infection without progressing to AIDS. They discovered three potent antibodies coexisting with viral strains that were sensitive to antibody neutralization, indicating that these antibodies may be contributing to viral control. These antibodies were also able to prevent HIV-1 viremia in humanized mice, demonstrating that the antibodies may be beneficial as passive immunotherapy for infected individuals. Some HIV-1–infected patients develop broad and potent HIV-1 neutralizing antibodies (bNAbs) that when passively transferred to mice or macaques can treat or prevent infection. However, bNAbs typically fail to neutralize coexisting autologous viruses due to antibody-mediated selection against sensitive viral strains. We describe an HIV-1 controller expressing HLA-B57*01 and HLA-B27*05 who maintained low viral loads for 30 years after infection and developed broad and potent serologic activity against HIV-1. Neutralization was attributed to three different bNAbs targeting nonoverlapping sites on the HIV-1 envelope trimer (Env). One of the three, BG18, an antibody directed against the glycan-V3 portion of Env, is the most potent member of this class reported to date and, as revealed by crystallography and electron microscopy, recognizes HIV-1 Env in a manner that is distinct from other bNAbs in this class. Single-genome sequencing of HIV-1 from serum samples obtained over a period of 9 years showed a diverse group of circulating viruses, 88.5% (31 of 35) of which remained sensitive to at least one of the temporally coincident autologous bNAbs and the individual’s serum. Thus, bNAb-sensitive strains of HIV-1 coexist with potent neutralizing antibodies that target the virus and may contribute to control in this individual. When administered as a mix, the three bNAbs controlled viremia in HIV-1YU2–infected humanized mice. Our finding suggests that combinations of bNAbs may contribute to control of HIV-1 infection.


Journal of Virology | 2014

CD4+ T-Cell Help Enhances NK Cell Function following Therapeutic HIV-1 Vaccination

Stephanie Jost; Phillip Tomezsko; Keith Rands; Ildiko Toth; Mathias Lichterfeld; Rajesh T. Gandhi; Marcus Altfeld

ABSTRACT Increasing data suggest that NK cells can mediate antiviral activity in HIV-1-infected humans, and as such, novel approaches harnessing the anti-HIV-1 function of both T cells and NK cells represent attractive options to improve future HIV-1 immunotherapies. Chronic progressive HIV-1 infection has been associated with a loss of CD4+ T helper cell function and with the accumulation of anergic NK cells. As several studies have suggested that cytokines produced by CD4+ T cells are required to enhance NK cell function in various infection models, we hypothesized that reconstitution of HIV-1-specific CD4+ T-cell responses by therapeutic immunization would restore NK cell activity in infected individuals. Using flow cytometry, we examined the function of CD4+ T cells and NK cells in response to HIV-1 in subjects with treated chronic HIV-1 infection before and after immunization with an adjuvanted HIV-1 Gp120/NefTat subunit protein vaccine candidate provided by GlaxoSmithKline. Vaccination induced an increased expression of interleukin-2 (IL-2) by Gp120-specific CD4+ T cells in response to HIV-1 peptides ex vivo, which was associated with enhanced production of gamma interferon (IFN-γ) by NK cells. Our data show that reconstitution of HIV-1-specific CD4+ T-cell function by therapeutic immunization can enhance NK cell activity in HIV-1-infected individuals. IMPORTANCE NK cells are effector cells of the innate immune system and are important in the control of viral infection. Recent studies have demonstrated the crucial role played by NK cells in controlling and/or limiting acquisition of HIV-1 infection. However, NK cell function is impaired during progressive HIV-1 infection. We recently showed that therapeutic immunization of treated HIV-1-infected individuals reconstituted strong T-cell responses, measured notably by their production of IL-2, a cytokine that can activate NK cells. The current study suggests that reconstitution of T-cell function by therapeutic vaccination can enhance NK cell activity in individuals with chronic HIV-1 infection. Our findings provide new insights into the interplay between adaptive and innate immune mechanisms involved in HIV-1 immunity and unveil opportunities to harness NK cell function in future therapeutic vaccine strategies to target HIV-1.


Retrovirology | 2013

Dysregulated Tim-3 expression on natural killer cells is associated with increased Galectin-9 levels in HIV-1 infection

Stephanie Jost; Uriel Y Moreno-Nieves; Wilfredo F. Garcia-Beltran; Keith Rands; Jeff Reardon; Ildiko Toth; Alicja Piechocka-Trocha; Marcus Altfeld; Marylyn M. Addo

BackgroundNatural killer (NK) cells constitutively express high levels of Tim-3, an immunoregulatory molecule recently proposed to be a marker for mature and functional NK cells. Whether HIV-1 infection modulates the expression of Tim-3 on NK cells, or the levels of its ligand Galectin-9 (Gal-9), and how signaling through these molecules affects the NK cell response to HIV-1 remains inadequately understood.ResultsWe analyzed Tim-3 and Gal-9 expression in a cohort of 85 individuals with early and chronic HIV-1 infection, and in 13 HIV-1 seronegative control subjects. HIV-1 infection was associated with reduced expression of Tim-3 on NK cells, which was normalized by HAART. Plasma concentrations of Gal-9 were higher in HIV-1-infected individuals than in healthy individuals. Interestingly, Gal-9 expression in immune cells was significantly elevated in early infection, with monocytes and dendritic cells displaying the highest expression levels, which correlated with HIV-1 viral loads. In vitro, Gal-9 triggered Tim-3 downregulation on NK cells as well as NK cell activation.ConclusionsOur data suggest that high expression levels of Gal-9 during early HIV-1 infection can lead to enhanced NK cell activity, possibly allowing for improved early control of HIV-1. In contrast, persistent Gal-9 production might impair Tim-3 activity and contribute to NK cell dysfunction in chronic HIV-1 infection.


Journal of Virology | 2012

Frequent and strong antibody-mediated natural killer cell activation in response to HIV-1 Env in individuals with chronic HIV-1 infection.

Christina Thobakgale; Lena Fadda; Kimberly Lane; Ildiko Toth; Florencia Pereyra; Suzane Bazner; Thumbi Ndung'u; Bruce D. Walker; Eric S. Rosenberg; Galit Alter; Mary Carrington; Todd M. Allen; Marcus Altfeld

ABSTRACT Natural killer (NK) cells play a critical role in the control of HIV-1 infection, and NK cells that respond to HIV-1 peptides have been recently described. However, the mechanisms by which NK cells recognize HIV-1 antigens are not fully understood. We investigated NK cell activation in response to HIV-1 peptides during early and chronic HIV-1 clade B infection using a whole-blood assay and multiparameter flow cytometry. Antibody-mediated NK cell activation in response to HIV-1 peptides was not detected in HIV-1-uninfected individuals. In contrast, 79% of individuals with chronic infection and 22% of individuals with early infection had detectable gamma interferon (IFN-γ) NK cell responses to HIV-1 antigens (P < 0.00001). IFN-γ- and tumor necrosis factor alpha (TNF-α)-producing NK cells most frequently targeted Env gp120 (median of 4% and range of 0 to 31% of all NK cells). NK cells rarely targeted other HIV-1 proteins such as Gag, Pol, and Nef. Antibody-mediated NK cell responses to peptides mapped predominantly to Env protein, required the presence of plasma or plasma IgG, and resulted in lower CD16 expression on NK cells, suggesting an antibody-mediated activation of NK cells. Further studies are needed to assess the consequences of these antibody-mediated NK cell responses for HIV-1 disease progression and vaccine-induced protection from infection.

Collaboration


Dive into the Ildiko Toth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hendrik Streeck

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne-Sophie Dugast

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge