Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hendrik Streeck is active.

Publication


Featured researches published by Hendrik Streeck.


Cell Host & Microbe | 2012

A Blueprint for HIV Vaccine Discovery

Dennis R. Burton; Rafi Ahmed; Dan H. Barouch; Salvatore T. Butera; Shane Crotty; Adam Godzik; Daniel E. Kaufmann; M. Juliana McElrath; Michel C. Nussenzweig; Bali Pulendran; Chris Scanlan; William R. Schief; Guido Silvestri; Hendrik Streeck; Bruce D. Walker; Laura M. Walker; Andrew B. Ward; Ian A. Wilson; Richard T. Wyatt

Despite numerous attempts over many years to develop an HIV vaccine based on classical strategies, none has convincingly succeeded to date. A number of approaches are being pursued in the field, including building upon possible efficacy indicated by the recent RV144 clinical trial, which combined two HIV vaccines. Here, we argue for an approach based, in part, on understanding the HIV envelope spike and its interaction with broadly neutralizing antibodies (bnAbs) at the molecular level and using this understanding to design immunogens as possible vaccines. BnAbs can protect against virus challenge in animal models, and many such antibodies have been isolated recently. We further propose that studies focused on how best to provide T cell help to B cells that produce bnAbs are crucial for optimal immunization strategies. The synthesis of rational immunogen design and immunization strategies, together with iterative improvements, offers great promise for advancing toward an HIV vaccine.


PLOS Pathogens | 2012

Whole genome deep sequencing of HIV-1 reveals the impact of early minor variants upon immune recognition during acute infection

Matthew R. Henn; Christian L. Boutwell; Patrick Charlebois; Niall J. Lennon; Karen A. Power; Alexander R. Macalalad; Aaron M. Berlin; Christine M. Malboeuf; Elizabeth Ryan; Sante Gnerre; Michael C. Zody; Rachel L. Erlich; Lisa Green; Andrew Berical; Yaoyu Wang; Monica Casali; Hendrik Streeck; Allyson K. Bloom; Tim Dudek; Damien C. Tully; Ruchi M. Newman; Karen L. Axten; Adrianne D. Gladden; Laura Battis; Michael Kemper; Qiandong Zeng; Terrance Shea; Sharvari Gujja; Carmen Zedlack; Olivier Gasser

Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia.


Science Translational Medicine | 2014

Polyfunctional Fc-Effector Profiles Mediated by IgG Subclass Selection Distinguish RV144 and VAX003 Vaccines

Amy W. Chung; Musie Ghebremichael; Hannah Robinson; Eric P. Brown; Ickwon Choi; Sophie Lane; Anne-Sophie Dugast; Matthew K. Schoen; Morgane Rolland; Todd J. Suscovich; Alison E. Mahan; Larry Liao; Hendrik Streeck; Charla Andrews; Supachai Rerks-Ngarm; Sorachai Nitayaphan; Mark S. de Souza; Jaranit Kaewkungwal; Punnee Pitisuttithum; Donald P. Francis; Nelson L. Michael; Jerome H. Kim; Chris Bailey-Kellogg; Margaret E. Ackerman; Galit Alter

RV144 vaccination induced polyfunctional antibody Fc-effector responses, whereas VAX003 vaccination increased inhibitory IgG4 antibodies. More Is Better for Protection Against HIV Recently, results from the first protective HIV phase 2B RV144 vaccine trial pointed to an unexpected signature of protection, not associated with the traditional mechanisms of vaccine-induced immunity, namely, neutralizing antibodies and killer T cell immunity. Instead, protection was associated with specific subpopulations of antibodies that were able to direct killing of HIV-infected cells. However, little is known about the properties of these killer antibodies or their biophysical features. In a new study, Chung et al. functionally profiled antibodies raised by the protective RV144 vaccine trial and its nonprotective predecessor, the VAX003 vaccine trial, both conducted in Thailand. RV144 vaccination uniquely induced antibodies capable of directing several different antiviral functions in a coordinated manner. In contrast, VAX003 vaccination predominantly induced single or uncoordinated antiviral responses. Functional coordination was regulated by the selection of antibody responses directed at vulnerable regions on the HIV envelope that were specifically tuned to enhanced functionality through the selection of a specific antibody subclass, IgG3, known to harbor strong antiviral activity. Collectively, these data suggest that vaccines able to induce broader antibody functional profiles, through the selection of more potent antibody subclasses, which target vulnerable regions of the virus, may represent a new means by which to achieve protection from HIV infection in the absence of neutralization. The human phase 2B RV144 ALVAC-HIV vCP1521/AIDSVAX B/E vaccine trial, held in Thailand, resulted in an estimated 31.2% efficacy against HIV infection. By contrast, vaccination with VAX003 (consisting of only AIDSVAX B/E) was not protective. Because protection within RV144 was observed in the absence of neutralizing antibody activity or cytotoxic T cell responses, we speculated that the specificity or qualitative differences in Fc-effector profiles of nonneutralizing antibodies may have accounted for the efficacy differences observed between the two trials. We show that the RV144 regimen elicited nonneutralizing antibodies with highly coordinated Fc-mediated effector responses through the selective induction of highly functional immunoglobulin G3 (IgG3). By contrast, VAX003 elicited monofunctional antibody responses influenced by IgG4 selection, which was promoted by repeated AIDSVAX B/E protein boosts. Moreover, only RV144 induced IgG1 and IgG3 antibodies targeting the crown of the HIV envelope V2 loop, albeit with limited coverage of breakthrough viral sequences. These data suggest that subclass selection differences associated with coordinated humoral functional responses targeting strain-specific protective V2 loop epitopes may underlie differences in vaccine efficacy observed between these two vaccine trials.


Journal of Virology | 2008

Marked Epitope- and Allele-Specific Differences in Rates of Mutation in Human Immunodeficiency Type 1 (HIV-1) Gag, Pol, and Nef Cytotoxic T-Lymphocyte Epitopes in Acute/Early HIV-1 Infection

Zabrina L. Brumme; Chanson J. Brumme; Jonathan M. Carlson; Hendrik Streeck; M. John; Quentin Eichbaum; Brian L. Block; Brett Baker; Carl M. Kadie; Martin Markowitz; Heiko Jessen; Anthony D. Kelleher; Eric S. Rosenberg; John M. Kaldor; Yuko Yuki; Mary Carrington; Todd M. Allen; S. Mallal; Marcus Altfeld; David Heckerman; Bruce D. Walker

ABSTRACT During acute human immunodeficiency virus type 1 (HIV-1) infection, early host cellular immune responses drive viral evolution. The rates and extent of these mutations, however, remain incompletely characterized. In a cohort of 98 individuals newly infected with HIV-1 subtype B, we longitudinally characterized the rates and extent of HLA-mediated escape and reversion in Gag, Pol, and Nef using a rational definition of HLA-attributable mutation based on the analysis of a large independent subtype B data set. We demonstrate rapid and dramatic HIV evolution in response to immune pressures that in general reflect established cytotoxic T-lymphocyte (CTL) response hierarchies in early infection. On a population level, HLA-driven evolution was observed in ∼80% of published CTL epitopes. Five of the 10 most rapidly evolving epitopes were restricted by protective HLA alleles (HLA-B*13/B*51/B*57/B*5801; P = 0.01), supporting the importance of a strong early CTL response in HIV control. Consistent with known fitness costs of escape, B*57-associated mutations in Gag were among the most rapidly reverting positions upon transmission to non-B*57-expressing individuals, whereas many other HLA-associated polymorphisms displayed slow or negligible reversion. Overall, an estimated minimum of 30% of observed substitutions in Gag/Pol and 60% in Nef were attributable to HLA-associated escape and reversion events. Results underscore the dominant role of immune pressures in driving early within-host HIV evolution. Dramatic differences in escape and reversion rates across codons, genes, and HLA restrictions are observed, highlighting the complexity of viral adaptation to the host immune response.


Journal of Virology | 2011

HIV-1-Specific Interleukin-21+ CD4+ T Cell Responses Contribute to Durable Viral Control through the Modulation of HIV-Specific CD8+ T Cell Function

Mathieu F. Chevalier; Boris Julg; Augustine Pyo; Michael Flanders; Srinika Ranasinghe; Damien Z. Soghoian; Douglas S. Kwon; Jenna Rychert; Jeffrey Lian; Matthias I. Muller; Sam Cutler; Elizabeth McAndrew; Heiko Jessen; Florencia Pereyra; Eric S. Rosenberg; Marcus Altfeld; Bruce D. Walker; Hendrik Streeck

ABSTRACT Functional defects in cytotoxic CD8+ T cell responses arise in chronic human viral infections, but the mechanisms involved are not well understood. In mice, CD4 cell-mediated interleukin-21 (IL-21) production is necessary for the maintenance of CD8+ T cell function and control of persistent viral infections. To investigate the potential role of IL-21 in a chronic human viral infection, we studied the rare subset of HIV-1 controllers, who are able to spontaneously control HIV-1 replication without treatment. HIV-specific triggering of IL-21 by CD4+ T cells was significantly enriched in these persons (P = 0.0007), while isolated loss of IL-21-secreting CD4+ T cells was characteristic for subjects with persistent viremia and progressive disease. IL-21 responses were mediated by recognition of discrete epitopes largely in the Gag protein, and expansion of IL-21+ CD4+ T cells in acute infection resulted in lower viral set points (P = 0.002). Moreover, IL-21 production by CD4+ T cells of HIV controllers enhanced perforin production by HIV-1-specific CD8+ T cells from chronic progressors even in late stages of disease, and HIV-1-specific effector CD8+ T cells showed an enhanced ability to efficiently inhibit viral replication in vitro after IL-21 binding. These data suggest that HIV-1-specific IL-21+ CD4+ T cell responses might contribute to the control of viral replication in humans and are likely to be of great importance for vaccine design.


Nature Protocols | 2009

The role of IFN-γ Elispot assay in HIV vaccine research

Hendrik Streeck; Nicole Frahm; Bruce D. Walker

The interferon (IFN)-γ Elispot assay has been widely used as a general screening method for the quantification and characterization of the human immunodeficiency virus (HIV)-specific CD8+ T cell responses. However, the predictive power of this assay has been challenged due to the lack of efficacy of a recently conducted HIV vaccine phase IIb trial, despite induction of robust Elispot responses. This finding plus improvements in multiparameter flow cytometry, which has the potential advantage of simultaneously quantifying numerous parameters, raises questions regarding the future role of IFN-γ Elispot as a gateway to moving forward with clinical trials of candidate vaccines. However, the IFN-γ Elispot assay has been, unlike other techniques, evaluated and validated in several proficiency panels and is advantageous in cost-effectively detecting and mapping T-cell responses. Here we present a detailed protocol for a state-of-the-art 3-d IFN-γ Elispot assay and review further advantages and disadvantages of this method for the characterization of HIV-specific CD8+ T cell responses.


Expert Review of Vaccines | 2010

Cytolytic CD4(+) T cells in viral immunity.

Damien Z. Soghoian; Hendrik Streeck

It is generally believed that the role of CD4+ T cells is to coordinate the different arms of the adaptive immune system to shape an effective response against a pathogen and regulate nonessential or deleterious activities. However, a growing body of evidence suggests that effector CD4+ T cells can directly display potent antiviral activity themselves. The presence of cytolytic CD4+ T cells has been demonstrated in the immune response to numerous viral infections in both humans and in animal models and it is likely that they play a critical role in the control of viral replication in vivo. This article describes the current research on virus-specific cytolytic CD4+ T cells, with a focus on HIV-1 infection and the implications that this immune response has for vaccine design.


Journal of Experimental Medicine | 2008

Immune-driven recombination and loss of control after HIV superinfection

Hendrik Streeck; Bin Li; Art F. Y. Poon; Anne Schneidewind; Adrianne D. Gladden; Karen A. Power; Demetre Daskalakis; Suzane Bazner; Rosario Zuñiga; Christian Brander; Eric S. Rosenberg; Simon D. W. Frost; Marcus Altfeld; Todd M. Allen

After acute HIV infection, CD8+ T cells are able to control viral replication to a set point. This control is often lost after superinfection, although the mechanism behind this remains unclear. In this study, we illustrate in an HLA-B27+ subject that loss of viral control after HIV superinfection coincides with rapid recombination events within two narrow regions of Gag and Env. Screening for CD8+ T cell responses revealed that each of these recombination sites (∼50 aa) encompassed distinct regions containing two immunodominant CD8 epitopes (B27-KK10 in Gag and Cw1-CL9 in Env). Viral escape and the subsequent development of variant-specific de novo CD8+ T cell responses against both epitopes were illustrative of the significant immune selection pressures exerted by both responses. Comprehensive analysis of the kinetics of CD8 responses and viral evolution indicated that the recombination events quickly facilitated viral escape from both dominant WT- and variant-specific responses. These data suggest that the ability of a superinfecting strain of HIV to overcome preexisting immune control may be related to its ability to rapidly recombine in critical regions under immune selection pressure. These data also support a role for cellular immune pressures in driving the selection of new recombinant forms of HIV.


The Journal of Infectious Diseases | 2006

Immunological and Virological Impact of Highly Active Antiretroviral Therapy Initiated during Acute HIV-1 Infection

Hendrik Streeck; Heiko Jessen; Galit Alter; Nickolas Teigen; Michael T. Waring; Arne Jessen; Ingrid Stahmer; Jan van Lunzen; Mathias Lichterfeld; Xiaojiang Gao; Todd M. Allen; Mary Carrington; Bruce D. Walker; J. Rockstroh; Marcus Altfeld

The immunological and virological impact of short-term treatment initiated during acute human immunodeficiency virus type 1 (HIV-1) infection was assessed prospectively in 20 subjects, 12 of whom initiated highly active antiretroviral therapy (HAART) for 24 weeks and then terminated treatment. Treatment resulted in suppression of viremia, an increase in the CD4+ T cell count, enhanced differentiation of HIV-1-specific CD8(+) T cells from effector memory to effector cells at week 24 of HAART, and significantly higher virus-specific interferon- gamma+ CD8+ T cell responses after viral rebound (at week 48). However, despite these immunological changes, no differences in viremia or in the CD4+ T cell count were found 6 months after HAART was stopped, when treated subjects were compared with untreated subjects.


Immunity | 2016

Circulating HIV-Specific Interleukin-21+CD4+ T Cells Represent Peripheral Tfh Cells with Antigen-Dependent Helper Functions

Bruce T. Schultz; Jeffrey E. Teigler; Franco Pissani; Alexander F. Oster; Gregory Kranias; Galit Alter; Mary Marovich; Michael A. Eller; Ulf Dittmer; Merlin L. Robb; Jerome H. Kim; Nelson L. Michael; Diane L. Bolton; Hendrik Streeck

A central effort in HIV vaccine development is to generate protective broadly neutralizing antibodies, a process dependent on T follicular helper (Tfh) cells. The feasibility of using peripheral blood counterparts of lymph node Tfh cells to assess the immune response and the influence of viral and vaccine antigens on their helper functions remain obscure. We assessed circulating HIV-specific IL-21(+)CD4(+) T cells and showed transcriptional and phenotypic similarities to lymphoid Tfh cells, and hence representing peripheral Tfh (pTfh) cells. pTfh cells were functionally active and B cell helper quality differed depending on antigen specificity. Furthermore, we found higher frequency of pTfh cells in peripheral blood mononuclear cell specimens from the ALVAC+AIDSVAX (RV144) HIV vaccine trial associated with protective antibody responses compared to the non-protective DNA+Ad5 vaccine trial. Together, we identify IL-21(+)CD4(+) T cells as pTfh cells, implicating them as key populations in the generation of vaccine-evoked antibody responses.

Collaboration


Dive into the Hendrik Streeck's collaboration.

Top Co-Authors

Avatar

Nelson L. Michael

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Merlin L. Robb

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Michael A. Eller

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margaret E. Ackerman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mary Marovich

Walter Reed Army Institute of Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge