Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilia J. Leitch is active.

Publication


Featured researches published by Ilia J. Leitch.


Trends in Plant Science | 1997

Polyploidy in angiosperms

Ilia J. Leitch; Michael D. Bennett

Polyploidy has played a major role in higher plant evolution. Most flowering plants are polyploid, and many are distinct in combining the diploid nuclear genomes from two or more different ancestral species or genera (allopolyploids). Recently, molecular techniques have offered powerful new tools for studying the origin and evolution of polyploids. Genomic in situ hybridization allows unequivocal identification of allopolyploids and visualization of their ancestral genomes. Studies of restriction fragment length polymorphism have shown that maize — hitherto generally viewed as a diploid — is really a tetraploid, and that multiple origins are common, if not the rule, for polyploid plant species. It appears that after polyploid formation, considerable and sometimes very rapid changes in genome structure and gene expression have occurred.


Science | 2008

Genomic Plasticity and the Diversity of Polyploid Plants

Andrew R. Leitch; Ilia J. Leitch

Polyploidy, a change whereby the entire chromosome set is multiplied, arises through mitotic or meiotic misdivisions and frequently involves unreduced gametes and interspecific hybridization. The success of newly formed angiosperm polyploids is partly attributable to their highly plastic genome structure, as manifested by tolerance to changing chromosome numbers (aneuploidy and polyploidy), genome size, (retro)transposable element mobility, insertions, deletions, and epigenome restructuring. The ability to withstand large-scale changes, frequently within one or a few generations, is associated with a restructuring of the transcriptome, metabolome, and proteome and can result in an altered phenotype and ecology. Thus, polyploid-induced changes can generate individuals that are able to exploit new niches or to outcompete progenitor species. This process has been a major driving force behind the divergence of the angiosperms and their biodiversity.


New Phytologist | 2008

Genome size is a strong predictor of cell size and stomatal density in angiosperms

Jeremy M. Beaulieu; Ilia J. Leitch; Sunil Patel; Arjun Pendharkar; Charles A. Knight

Across eukaryotes phenotypic correlations with genome size are thought to scale from genome size effects on cell size. However, for plants the genome/cell size link has only been thoroughly documented within ploidy series and small subsets of herbaceous species. Here, the first large-scale comparative analysis is made of the relationship between genome size and cell size across 101 species of angiosperms of varying growth forms. Guard cell length and epidermal cell area were used as two metrics of cell size and, in addition, stomatal density was measured. There was a significant positive relationship between genome size and both guard cell length and epidermal cell area and a negative relationship with stomatal density. Independent contrast analyses revealed that these traits are undergoing correlated evolution with genome size. However, the relationship was growth form dependent (nonsignificant results within trees/shrubs), although trees had the smallest genome/cell sizes and the highest stomatal density. These results confirm the generality of the genome size/cell size relationship. The results also suggest that changes in genome size, with concomitant influences on stomatal size and density, may influence physiology, and perhaps play an important genetic role in determining the ecological and life-history strategy of a species.


American Journal of Botany | 2003

Evolution of genome size in the angiosperms.

Douglas E. Soltis; Pamela S. Soltis; Michael D. Bennett; Ilia J. Leitch

Genome size varies extensively across the flowering plants, which has stimulated speculation regarding the ancestral genome size of these plants and trends in genome evolution. We investigated the evolution of C-values across the angiosperms using a molecular phylogenetic framework and C-values not previously available for crucial basal angiosperms, including Amborella, Illiciaceae, and Austrobaileya. Reconstructions of genome size across the angiosperms and extant gymnosperms indicate that the ancestral genome size for angiosperms is very small (1C ≤ 1.4 pg), in agreement with an earlier analysis of Leitch et al. (1998). Furthermore, a very small genome size (1C ≤ 1.4 pg) is ancestral not only for the angiosperms in general, but also for most major clades of flowering plants, including the monocots and the eudicots. The ancestral genome of core eudicots may also have been very small given that very low 1C-values appear to be ancestral for major clades of core eudicots, such as Caryophyllales, Saxifragales, and asterids. Very large genomes occur in clades that occupy derived positions within the monocots and Santalales.


American Journal of Botany | 2002

The use of dna sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae).

Trevor R. Hodkinson; Mark W. Chase; Chigusa Takahashi; Ilia J. Leitch; Michael D. Bennett; Stephen A. Renvoize

Two clones of Miscanthus, grown under the names M. ×giganteus and M. sacchariflorus, have been used in biomass trials in Europe, but neither the identity of these clones nor their origin has been established. DNA sequencing, amplified fragment length polymorphism (AFLP), and chromosome studies confirm that M. ×giganteus is an allotriploid (2n = 3x = 57) combining genomes from M. sinensis (2n = 2x = 38) and M. sacchariflorus (2n = 38 or 76). Two alleles of the internal transcribed spacer of 18S-25S nuclear ribosomal DNA (ITS) were discovered in polymerase chain reaction products of M. ×giganteus. Cloning of these revealed that one matched M. sinensis and the other M. sacchariflorus. Plastid trnL intron and trnL-F spacer sequences showed that the maternal lineage of M. ×giganteus was M. sacchariflorus. Fluorescent in situ hybridization, FISH, was used to investigate genome organization in Miscanthus but was unable to differentiate between the different parental genomes present in M. ×giganteus, indicating that two parental genomes are still extremely similar at the repetitive DNA level. This study is an example in which rDNA sequences and AFLP fingerprints permit identification of the parental genomes in a hybrid, but FISH methods, at the repetitive DNA level (including genomic in situ hybridization, GISH), were unable to do so because their sequences remain too similar.


Annals of Botany | 2008

The Ups and Downs of Genome Size Evolution in Polyploid Species of Nicotiana (Solanaceae)

Ilia J. Leitch; Lynda Hanson; K.Y. Lim; Ales Kovarik; Mark W. Chase; James J. Clarkson; Andrew R. Leitch

BACKGROUND In studies looking at individual polyploid species, the most common patterns of genomic change are that either genome size in the polyploid is additive (i.e. the sum of parental genome donors) or there is evidence of genome downsizing. Reports showing an increase in genome size are rare. In a large-scale analysis of 3008 species, genome downsizing was shown to be a widespread biological response to polyploidy. Polyploidy in the genus Nicotiana (Solanaceae) is common with approx. 40 % of the approx. 75 species being allotetraploid. Recent advances in understanding phylogenetic relationships of Nicotiana species and dating polyploid formation enable a temporal dimension to be added to the analysis of genome size evolution in these polyploids. METHODS Genome sizes were measured in 18 species of Nicotiana (nine diploids and nine polyploids) ranging in age from <200,000 years to approx. 4.5 Myr old, to determine the direction and extent of genome size change following polyploidy. These data were combined with data from genomic in situ hybridization and increasing amounts of information on sequence composition in Nicotiana to provide insights into the molecular basis of genome size changes. KEY RESULTS AND CONCLUSIONS By comparing the expected genome size of the polyploid (based on summing the genome size of species identified as either a parent or most closely related to the diploid progenitors) with the observed genome size, four polyploids showed genome downsizing and five showed increases. There was no discernable pattern in the direction of genome size change with age of polyploids, although with increasing age the amount of genome size change increased. In older polyploids (approx. 4.5 million years old) the increase in genome size was associated with loss of detectable genomic in situ hybridization signal, whereas some hybridization signal was still detected in species exhibiting genome downsizing. The possible significance of these results is discussed.


The Evolution of the Genome | 2005

Genome Size Evolution in Plants

Michael D. Bennett; Ilia J. Leitch

Publisher Summary This chapter provides an overview of the current state of knowledge concerning genome size evolution in plants. It includes a review of available data, the patterns of variation both within and among species, and higher taxa. Every cellular organism possesses a genome and genome size evolution is not limited to any one taxon, but rather is of universal biological interest. Along with animals, plants are the best studied group with regard to variation in DNA content, and have played a critical role since the earliest days of genome size study. The field of genome size research in plants may be considered to have reached “the end of the beginning.” Although the Plant DNA C-values Database includes representatives from each of the major land plant groups, the percent coverage at the species level remains very poor (generally


Molecular Biology and Evolution | 2008

The Dynamic Ups and Downs of Genome Size Evolution in Brassicaceae

Martin A. Lysak; Marcus A. Koch; Jeremy M. Beaulieu; Armin Meister; Ilia J. Leitch

Crucifers (Brassicaceae, Cruciferae) are a large family comprising some 338 genera and c. 3,700 species. The family includes important crops as well as several model species in various fields of plant research. This paper reports new genome size (GS) data for more than 100 cruciferous species in addition to previously published C-values (the DNA amount in the unreplicated gametic nuclei) to give a data set comprising 185 Brassicaceae taxa, including all but 1 of the 25 tribes currently recognized. Evolution of GS was analyzed within a phylogenetic framework based on gene trees built from five data sets (matK, chs, adh, trnLF, and ITS). Despite the 16.2-fold variation across the family, most Brassicaceae species are characterized by very small genomes with a mean 1C-value of 0.63 pg. The ancestral genome size (ancGS) for Brassicaceae was reconstructed as (anc)1C=0.50 pg. Approximately 50% of crucifer taxa analyzed showed a decrease in GS compared with the ancGS. The remaining species showed an increase in GS although this was generally moderate, with significant increases in C-value found only in the tribes Anchonieae and Physarieae. Using statistical approaches to analyze GS, evolutionary gains or losses in GS were seen to have accumulated disproportionately faster within longer branches. However, we also found that GS has not changed substantially through time and most likely evolves passively (i.e., a tempo that cannot be distinguished between neutral evolution and weak forms of selection). The data reveal an apparent paradox between the narrow range of small GSs over long evolutionary time periods despite evidence of dynamic genomic processes that have the potential to lead to genome obesity (e.g., transposable element amplification and polyploidy). To resolve this, it is suggested that mechanisms to suppress amplification and to eliminate amplified DNA must be active in Brassicaceae although their control and mode of operation are still poorly understood.


Annals of Botany | 2009

Chromosome diversity and evolution in Liliaceae

L. Peruzzi; Ilia J. Leitch; K.F. Caparelli

BACKGROUND AND AIMS There is an extensive literature on the diversity of karyotypes found in genera within Liliaceae, but there has been no attempt to analyse these data within a robust phylogenetic framework. In part this has been due to a lack of consensus on which genera comprise Liliaceae and the relationships between them. Recently, however, this changed with the proposal for a relatively broad circumscription of Liliaceae comprising 15 genera and an improved understanding of the evolutionary relationships between them. Thus there is now the opportunity to examine patterns and trends in chromosome evolution across the family as a whole. METHODS Based on an extensive literature survey, karyo-morphometric features for 217 species belonging to all genera in Liliaceae sensu the APG (Angiosperm Phylogeny Group) were obtained. Included in the data set were basic chromosome number, ploidy, chromosome total haploid length (THL) and 13 different measures of karyotype asymmetry. In addition, genome size estimates for all species studied were inferred from THLs using a power regression model constructed from the data set. Trends in karyotype evolution were analysed by superimposing the karyological data onto a phylogenetic framework for Liliaceae. KEY RESULTS AND CONCLUSIONS Combining the large amount of data enabled mean karyotypes to be produced, highlighting marked differences in karyotype structure between the 15 genera. Further differences were noted when various parameters for analysing karyotype asymmetry were assessed. By examining the effects of increasing genome size on karyotype asymmetry, it was shown that in many but not all (e.g. Fritillaria and all of Tulipeae) species, the additional DNA was added preferentially to the long arms of the shorter chromosomes rather than being distributed across the whole karyotype. This unequal pattern of DNA addition is novel, contrasting with the equal and proportional patterns of DNA increase previously reported. Overall, the large-scale analyses of karyotype features within a well-supported phylogenetic framework enabled the most likely patterns of chromosome evolution in Liliaceae to be reconstructed, highlighting diverse modes of karyotype evolution, even within this comparatively small monocot family.


American Journal of Botany | 2000

Ribosomal DNA evolution and phylogeny in Aloe (Asphodelaceae)

Stuart P. Adams; Ilia J. Leitch; Michael D. Bennett; Mark W. Chase; Andrew R. Leitch

All Aloe taxa (∼400 species) share a conserved bimodal karyotype with a basic genome of four large and three small submetacentric/acrocentric chromosomes. We investigated the physical organization of 18S-5.8S-26S and 5S ribosomal DNA (rDNA) using fluorescent in situ hybridization (FISH) to 13 Aloe species. The organization was compared with a phylogenetic tree of 28 species (including the 13 used for FISH) constructed by sequence analysis of the internal transcribed spacer (ITS) of 18S-5.8S-26S rDNA. The phylogeny showed little divergence within Aloe, although distinct, well-supported clades were found. FISH analysis of 5S rDNA distribution showed a similar interstitial location on a large chromosome in all species examined. In contrast, the distribution of 18S-5.8S-26S rDNA was variable, with differences in number, location, and size of loci found between species. Nevertheless, within well-supported clades, all species had the same organizational patterns. Thus, despite the striking stability of karyotype structure and location of 5S rDNA, the distribution of 18S-5.8S-26S rDNA is not so constrained and has clearly changed during Aloe speciation.

Collaboration


Dive into the Ilia J. Leitch's collaboration.

Top Co-Authors

Avatar

Andrew R. Leitch

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael F. Fay

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Mark W. Chase

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura J. Kelly

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maïté S. Guignard

Queen Mary University of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge