Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilia Katardjiev is active.

Publication


Featured researches published by Ilia Katardjiev.


Journal of Materials Research | 2002

Reactive Sputter Deposition of Highly Oriented AlN Films at Room Temperature

Gonzalo Fuentes Iriarte; Fredrik Engelmark; Ilia Katardjiev

Textured as well as epitaxial thin AlN films are of great interest for a wide range of electro-acoustic and optoelectronic applications. Reduction of the deposition temperature is of vital importance in a number of applications due to thermal budget limitations. In this work we systematically studied the influence of the process parameters on the film properties and identified the factors leading to improved film quality as well as reduced deposition temperature with pulsed direct current sputtering in an Ar/N 2 atmosphere. We demonstrated that fully textured (0002) films can be grown under a wide range of conditions. At the same time the full width at half-maximum (FWHM) of the rocking curve of the (0002) XRD peak was found to vary systematically with process conditions-depostion rate, process pressure, gas composition, and substrate temperature. The best films showed a FWHM of 1.2°. We found that by far the most important factor is the arrival energy of the sputtered Al atoms, which is primarily controlled by the process pressure. We report for the first time that fully textured AlN films with a FWHM of under 2° can be grown at room temperature. Other important factors are the ion and electron bombardment of the films and substrate temperature as well as gas composition, although their influence is not as dramatic. Generally, the film quality increases with temperature. Bias and electron bombardment within a certain range also lead to better films.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2007

Micromachined thin film plate acoustic resonators utilizing the lowest order symmetric lamb wave mode

Ventsislav Yantchev; Ilia Katardjiev

Thin film integrated circuits compatible resonant structures using the lowest order symmetric Lamb wave propagating in thin aluminum nitride (AlN) film membranes have been studied. The 2-mum thick, highly c-oriented AlN piezoelectric films have been grown on silicon by pulsed, direct-current magnetron reactive sputter deposition. The films were deposited at room temperature and had typical full-width, half-maximum value of the rocking curve of about 2 degrees. Thin film plate acoustic resonators were designed and micromachined using low resolution photolithography and deep silicon etching. Plate waves, having a 12-mum wavelength, were excited by means of both interdigital (IDT) and longitudinal wave transducers using lateral field excitation (LW-LFE), and reflected by periodical aluminum-strip gratings deposited on top of the membrane. The existence of a frequency stopband and strong grating reflectivity have been theoretically predicted and experimentally observed. One-port resonator designs having varying cavity lengths and transducer topology were fabricated and characterized. A quality factor exceeding 3000 has been demonstrated at frequencies of about 885 MHz. The IDT based film plate acoustic resonators (FPAR) technology proved to be preferable when lower costs and higher Qs are pursued. The LW-LFE-based FPAR technology offers higher excitation efficiency at costs comparable to that of the thin film bulk acoustic wave resonator (FBAR) technology


Journal of Vacuum Science and Technology | 2000

Synthesis of highly oriented piezoelectric AlN films by reactive sputter deposition

Fredrik Engelmark; G. Fucntes; Ilia Katardjiev; A. Harsta; U. Smith; Sören Berg

Nucleation and growth of polycrystalline AlN films on thermal and chemical vapor deposited oxide have been studied during rf reactive sputter deposition. The influence of the growth conditions, namely deposition pressure, rf power, Ar/N2 ratio, and substrate temperature, on film properties has been systematically studied. The properties of interest are crystallinity, degree of orientation, crystallite size, surface roughness, stress, piezoelectric coupling, acoustic velocity, and others. The films have been analyzed with Rutherford backscattering spectroscopy, electron spectroscopy for chemical analysis, x-ray diffraction (XRD), ellipsometry, scanning electron microscopy, atomic force microscopy, stress measurements, etc. It is found that these properties are sensitive functions of all deposition parameters and that there exist optimal deposition conditions under which films of high quality are obtained. The films at optimal conditions were analyzed with the following results: full width half maximum (FWH...


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2006

Synthesis of textured thin piezoelectric AlN films with a nonzero C-axis mean tilt for the fabrication of shear mode resonators

Johan Bjurström; Gunilla Wingqvist; Ilia Katardjiev

A method for the deposition of thin piezo-electric aluminum nitride (AlN) films with a nonzero c-axis mean tilt has been developed. The deposition is done in a standard reactive magnetron sputter deposition system without any hardware modifications. In essence, the method consists of a two-stage deposition process. The resulting film has a distinct tilted texture with the mean tilt of the c-axis varying roughly in the interval 28 to 32 degrees over the radius of the wafer excluding a small exclusion zone at the center of the latter. The mean tilt angle distribution over the wafer has a circular symmetry. A membrane-type shear mode thickness-excited thin film bulk acoustic resonator together with a micro-fluidic transport system has been subsequently fabricated using the two stage AlN de-position as well as standard bulk micro machining of Si. The resonator consisted of a 2-mum-thick AlN film with 200-nm-thick Al top and bottom electrodes. The resonator was characterized with a network analyzer when operating in both air and water. The shear mode resonance frequency was about 1.6 GHz, the extracted device Q around 350, and the electromechanical coupling kt 2 2% when the resonator was operated in air, whereas the latter two dropped down to 150 and 1.8%, respectively, when the resonator was operated in pure water


Applied Physics Letters | 2005

Lateral-field-excited thin-film Lamb wave resonator

Johan Bjurström; Ilia Katardjiev; Ventsislav Yantchev

The basic principles and technology for the development of lateral-field-excited Lamb acoustic wave resonators on sputter-deposited c-oriented thin aluminum nitride films are presented. The experimental results demonstrate that Lamb waves can be successfully used as an alternative to high-velocity surface acoustic waves.


Journal of Micromechanics and Microengineering | 2007

Temperature compensation of liquid FBAR sensors

Johan Bjurström; Gunilla Wingqvist; Ventsislav Yantchev; Ilia Katardjiev

In this work we demonstrate a practically complete temperature compensation of the second harmonic shear mode in a composite Al/AlN/Al/SiO2 thin film bulk acoustic resonator (FBAR) in the temperature range 25 °C–95 °C. The main advantages of this mode are its higher Q value in liquids as well as its higher frequency and hence higher resolution for sensor applications. For comparative reasons the non-compensated fundamental shear mode is also included in these studies. Both modes have been characterized when operated both in air and in pure water. Properties such as Q value, electromechanical coupling, dissipation and sensitivity are studied. An almost complete temperature compensation of the second harmonic shear mode was observed for an oxide thickness of 1.22 µm for an FBAR consisting of 2 µm thick AlN and 200 nm thick Al electrodes. Thus, the measured temperature coefficient of frequency (TCF) in air for the non-compensated fundamental shear mode (1.25 GHz) varied between −31 and −36 ppm °C−1 over the above temperature range while that of the compensated second harmonic shear mode (1.32 GHz) varied between +2 ppm °C−1 and −2 ppm °C−1 over the same temperature interval. When operated in pure water the former type shows a Q value and coupling coefficient, k2t, around 180 and 2%, respectively, whereas for the second harmonic these are 230 and 1.4%, respectively.


Journal of Vacuum Science and Technology | 2001

Structural and electroacoustic studies of AlN thin films during low temperature radio frequency sputter deposition

Fredrik Engelmark; Gonzalo Fuentes Iriarte; Ilia Katardjiev; Mikael Ottosson; P Muralt; Sören Berg

AIN is a material used in a wide variety of applications such as electroacoustic devices, blue diodes, IR windows, thermal conductors, metal-insulator-semiconductor structures, integrated circuit packaging, etc. In this work thin piezoelectric AIN polycrystalline films have been grown on Si and SiO2 using rf magnetron sputter deposition in an Ar/N-2 gas mixture. The structural properties of the film have been optimized by varying the deposition parameters, such as process pressure, gas mixture, substrate temperature, discharge power, etc. [K. Tominaga et al., Jpn. J. Appl. Phys., Part 1 35, 4972 (1996); H. Okana et al., ibid. 31, 3446 (1992); K. Kazuya, T. Hanabusa, and K. Tominaga, Thin Solid Films 281-282, 340 (1996)]. It was found that the best film texture was obtained for a particular set of parameters, namely process pressure of 4 mTorr, substrate temperature 350 degreesC, discharge power 350 W, and a gas mixture of 25% Ar and 75% N-2. The films as examined by x-ray diffraction exhibited a columnar structure with a strong (001) texture, and a fall width at half maximum (FWHM) rocking curve of 1.6 degrees. Atomic force microscopy measurements indicated a surface roughness with a rms value of 8 Angstrom. Classical nonapodized transversal surface acoustic wave filters operating at a frequency of 534 MHz were fabricated to characterize the electroacoustic properties of the films. The measurements indicated a coupling coefficient of 0.37% and a phase velocity of 4900 m/s. Further, thin epitaxial films were grown on (001)alpha -Al2O3 (sapphire) under the same deposition conditions except the substrate temperature. The films exhibited a (001)AlN//(001)alpha -Al2O3 plane orientation with a (002) rocking curve FWHM value of about 0.4 degrees, showing a relatively good alignment of the c axis. The in-plane orientation was [110]AlN//[120]alpha -Al2O3 corresponding to a rotation of the AIN film of 30 degrees with respect to the (001)alpha -Al2O3 surface. Cross-sectional transmission electron microscopy studies indicated a population of both thread and edge dislocations with decreasing concentrations with film thickness


Journal of Micromechanics and Microengineering | 2009

A micromachined thermally compensated thin film Lamb wave resonator for frequency control and sensing applications

Gunilla Wingqvist; Lilia Arapan; Ventsislav Yantchev; Ilia Katardjiev

Micromachined thin film plate acoustic wave resonators (FPARs) utilizing the lowest order symmetric Lamb wave (S0) propagating in highly textured 2 µm thick aluminium nitride (AlN) membranes have been successfully demonstrated (Yantchev and Katardjiev 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 87–95). The proposed devices have a SAW-based design and exhibit Q factors of up to 3000 at a frequency around 900 MHz as well as design flexibility with respect to the required motional resistance. However, a notable drawback of the proposed devices is the non-zero temperature coefficient of frequency (TCF) which lies in the range −20 ppm K−1 to −25 ppm K−1. Thus, despite the promising features demonstrated, further device optimization is required. In this work temperature compensation of thin AlN film Lamb wave resonators is studied and experimentally demonstrated. Temperature compensation while retaining at the same time the device electromechanical coupling is experimentally demonstrated. The zero TCF Lamb wave resonators are fabricated onto composite AlN/SiO2 membranes. Q factors of around 1400 have been measured at a frequency of around 755 MHz. Finally, the impact of technological issues on the device performance is discussed in view of improving the device performance.


Thin Solid Films | 2000

Frequency response in pulsed DC reactive sputtering processes

Lars Jonsson; Tomas Nyberg; Ilia Katardjiev; Sören Berg

Abstract By simple arguments as well as results from a recently developed computer simulation model we have found out that for high frequency pulsed DC reactive sputtering the target poisoning does not reflect the periodicity of the pulsed DC power supply. The degree of target poisoning does not change markedly during a single duty cycle. The degree of poisoning essentially exhibits the same continuous time independent behavior as observed for the conventional continuous reactive sputtering process. Furthermore, it is shown that the distribution width of the transit times for sputtered atoms by far exceeds the period time for pulsed DC frequencies higher than 5–10 kHz. This causes a large overlap between sputter eroded material between consecutive pulses during processing resulting in an essentially continuous arrival rate of sputtered atoms to the substrate surface. This implies also that the deposition rate will be constant and will not follow the pulsed sputter erosion variation from the target. These findings show that, with respect to film stoichiometry and homogeneity, the high frequency pulsed DC reactive sputtering process behaves identically as the continuous reactive sputtering process. No chemical reaction effects or gas gettering variations will follow the periodicity of the pulsed DC power supply at high frequencies.


Journal of Micromechanics and Microengineering | 2013

Thin film Lamb wave resonators in frequency control and sensing applications: a review

Ventsislav Yantchev; Ilia Katardjiev

This work makes an overview of the progress made during the last decade with regard to a novel class of piezoelectric microwave devices employing acoustic Lamb waves in micromachined thin film membranes. This class of devices is referred to as either thin film Lamb wave resonators or piezoelectric contour-mode resonators both employing thin film aluminum nitride membranes. These devices are of interest for applications in both frequency control and sensing. High quality factor Lamb wave resonators exhibiting low noise, low loss and thermally stable performance are demonstrated and their application in high resolution gravimetric and pressure sensors further discussed. A specific emphasis is put on the ability of these devices to operate in contact with liquids. Future research directions are further outlined.

Collaboration


Dive into the Ilia Katardjiev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge