Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilja Kusters is active.

Publication


Featured researches published by Ilja Kusters.


Cellular and Molecular Life Sciences | 2011

SecA, a remarkable nanomachine

Ilja Kusters; Arnold J. M. Driessen

Biological cells harbor a variety of molecular machines that carry out mechanical work at the nanoscale. One of these nanomachines is the bacterial motor protein SecA which translocates secretory proteins through the protein-conducting membrane channel SecYEG. SecA converts chemically stored energy in the form of ATP into a mechanical force to drive polypeptide transport through SecYEG and across the cytoplasmic membrane. In order to accommodate a translocating polypeptide chain and to release transmembrane segments of membrane proteins into the lipid bilayer, SecYEG needs to open its central channel and the lateral gate. Recent crystal structures provide a detailed insight into the rearrangements required for channel opening. Here, we review our current understanding of the mode of operation of the SecA motor protein in concert with the dynamic SecYEG channel. We conclude with a new model for SecA-mediated protein translocation that unifies previous conflicting data.


The EMBO Journal | 2011

A single copy of SecYEG is sufficient for preprotein translocation

Alexej Kedrov; Ilja Kusters; Arnold J. M. Driessen

The heterotrimeric SecYEG complex comprises a protein‐conducting channel in the bacterial cytoplasmic membrane. SecYEG functions together with the motor protein SecA in preprotein translocation. Here, we have addressed the functional oligomeric state of SecYEG when actively engaged in preprotein translocation. We reconstituted functional SecYEG complexes labelled with fluorescent markers into giant unilamellar vesicles at a natively low density. Försters resonance energy transfer and fluorescence (cross‐) correlation spectroscopy with single‐molecule sensitivity allowed for independent observations of the SecYEG and preprotein dynamics, as well as complex formation. In the presence of ATP and SecA up to 80% of the SecYEG complexes were loaded with a preprotein translocation intermediate. Neither the interaction with SecA nor preprotein translocation resulted in the formation of SecYEG oligomers, whereas such oligomers can be detected when enforced by crosslinking. These data imply that the SecYEG monomer is sufficient to form a functional translocon in the lipid membrane.


Structure | 2011

Quaternary structure of SecA in solution and bound to SecYEG probed at the single molecule level.

Ilja Kusters; Geert van den Bogaart; Alexej Kedrov; Faizah Fulyani; Bert Poolman; Arnold J. M. Driessen

Dual-color fluorescence-burst analysis (DCFBA) was applied to measure the quaternary structure and high-affinity binding of the bacterial motor protein SecA to the protein-conducting channel SecYEG reconstituted into lipid vesicles. DCFBA is an equilibrium technique that enables the direct observation and quantification of protein-protein interactions at the single molecule level. SecA binds to SecYEG as a dimer with a nucleotide- and preprotein-dependent dissociation constant. One of the SecA protomers binds SecYEG in a salt-resistant manner, whereas binding of the second protomer is salt sensitive. Because protein translocation is salt sensitive, we conclude that the dimeric state of SecA is required for protein translocation. A structural model for the dimeric assembly of SecA while bound to SecYEG is proposed based on the crystal structures of the Thermotoga maritima SecA-SecYEG and the Escherichia coli SecA dimer.


Biochimica et Biophysica Acta | 2015

Characterization of the annular lipid shell of the Sec translocon

Irfan Prabudiansyah; Ilja Kusters; Arnold J. M. Driessen

The bacterial Sec translocase in its minimal form consists of a membrane-embedded protein-conducting pore SecYEG that interacts with the motor protein SecA to mediate the translocation of secretory proteins. In addition, the SecYEG translocon interacts with the accessory SecDFyajC membrane complex and the membrane protein insertase YidC. To examine the composition of the native lipid environment in the vicinity of the SecYEG complex and its impact on translocation activity, styrene-maleic acid lipid particles (SMALPs) were used to extract SecYEG with its lipid environment directly from native Escherichia coli membranes without the use of detergents. This allowed the co-extraction of SecYEG in complex with SecA, but not with SecDFyajC or YidC. Lipid analysis of the SecYEG-SMALPs revealed an enrichment of negatively charged lipids in the vicinity of SecYEG, which in detergent assisted reconstitution of the Sec translocase are crucial for the translocation activity. Such lipid enrichment was not found with separately extracted SecDFyajC or YidC, which demonstrates a specific interaction between SecYEG and negatively charged lipids.


Methods | 2008

Dual-color fluorescence-burst analysis to study pore formation and protein-protein interactions

Geert van den Bogaart; Ilja Kusters; Jeanette Velásquez; Jacek T. Mika; Arnold J. M. Driessen; Bert Poolman

Dual-color fluorescence-burst analysis (DCBFA) enables to study leakage of fluorescently labeled (macro) molecules from liposomes that are labeled with a second, spectrally non-overlapping fluorophore. The fluorescent bursts that reside from the liposomes diffusing through the focal volume of a confocal microscope will coincide with those from the encapsulated size-marker molecules. The internal concentration of size-marker molecules can be quantitatively calculated from the fluorescence bursts at a single liposome level. DCFBA has been successfully used to study the effective pore-size of the mechanosensitive channel of large-conductance MscL and the pore-forming mechanism of the antimicrobial peptide melittin from bee venom. In addition, DCFBA can be used to quantitatively measure the binding of proteins to liposomes and to membrane proteins. In this paper, we provide an overview of the method and discuss the experimental details of DCFBA.


PLOS ONE | 2011

Taming Membranes: Functional Immobilization of Biological Membranes in Hydrogels

Ilja Kusters; Nobina Mukherjee; Menno R. de Jong; Sander J. Tans; Armagan Kocer; Arnold J. M. Driessen

Single molecule studies on membrane proteins embedded in their native environment are hampered by the intrinsic difficulty of immobilizing elastic and sensitive biological membranes without interfering with protein activity. Here, we present hydrogels composed of nano-scaled fibers as a generally applicable tool to immobilize biological membrane vesicles of various size and lipid composition. Importantly, membrane proteins immobilized in the hydrogel as well as soluble proteins are fully active. The triggered opening of the mechanosensitive channel of large conductance (MscL) reconstituted in giant unilamellar vesicles (GUVs) was followed in time on single GUVs. Thus, kinetic studies of vectorial transport processes across biological membranes can be assessed on single, hydrogel immobilized, GUVs. Furthermore, protein translocation activity by the membrane embedded protein conducting channel of bacteria, SecYEG, in association with the soluble motor protein SecA was quantitatively assessed in bulk and at the single vesicle level in the hydrogel. This technique provides a new way to investigate membrane proteins in their native environment at the single molecule level by means of fluorescence microscopy.


Methods of Molecular Biology | 2010

Purification and Functional Reconstitution of the Bacterial Protein Translocation Pore, the SecYEG Complex

Ilja Kusters; G. van den Bogaart; J.G. de Wit; Viktor Krasnikov; Berend Poolman; Arnold J. M. Driessen

In bacteria, proteins are secreted across the cytoplasmic membrane by a protein complex termed translocase. The ability to study the activity of the translocase in vitro using purified proteins has been instrumental for our understanding of the mechanisms underlying this process. Here, we describe the protocols for the purification and reconstitution of the SecYEG complex in an active state into liposomes. In addition, fluorescence based in vitro assays are described that allow monitoring translocation activity discontinuously and in real time.


ACS Nano | 2014

Membrane-on-a-Chip: Microstructured Silicon/Silicon-Dioxide Chips for High-Throughput Screening of Membrane Transport and Viral Membrane Fusion

Ilja Kusters; Antoine M. van Oijen; Arnold J. M. Driessen

Screening of transport processes across biological membranes is hindered by the challenge to establish fragile supported lipid bilayers and the difficulty to determine at which side of the membrane reactants reside. Here, we present a method for the generation of suspended lipid bilayers with physiological relevant lipid compositions on microstructured Si/SiO2 chips that allow for high-throughput screening of both membrane transport and viral membrane fusion. Simultaneous observation of hundreds of single-membrane channels yields statistical information revealing population heterogeneities of the pore assembly and conductance of the bacterial toxin α-hemolysin (αHL). The influence of lipid composition and ionic strength on αHL pore formation was investigated at the single-channel level, resolving features of the pore-assembly pathway. Pore formation is inhibited by a specific antibody, demonstrating the applicability of the platform for drug screening of bacterial toxins and cell-penetrating agents. Furthermore, fusion of H3N2 influenza viruses with suspended lipid bilayers can be observed directly using a specialized chip architecture. The presented micropore arrays are compatible with fluorescence readout from below using an air objective, thus allowing high-throughput screening of membrane transport in multiwell formats in analogy to plate readers.


PLOS ONE | 2015

In Vitro Interaction of the Housekeeping SecA1 with the Accessory SecA2 Protein of Mycobacterium tuberculosis

Irfan Prabudiansyah; Ilja Kusters; Arnold J. M. Driessen

The majority of proteins that are secreted across the bacterial cytoplasmic membrane leave the cell via the Sec pathway, which in its minimal form consists of the dimeric ATP-driven motor protein SecA that associates with the protein-conducting membrane pore SecYEG. Some Gram-positive bacteria contain two homologues of SecA, termed SecA1 and SecA2. SecA1 is the essential housekeeping protein, whereas SecA2 is not essential but is involved in the translocation of a subset of proteins, including various virulence factors. Some SecA2 containing bacteria also harbor a homologous SecY2 protein that may form a separate translocase. Interestingly, mycobacteria contain only one SecY protein and thus both SecA1 and SecA2 are required to interact with SecYEG, either individually or together as a heterodimer. In order to address whether SecA1 and SecA2 cooperate during secretion of SecA2 dependent proteins, we examined the oligomeric state of SecA1 and SecA2 of Mycobacterium tuberculosis and their interactions with SecA2 and the cognate SecA1, respectively. We conclude that both SecA1 and SecA2 individually form homodimers in solution but when both proteins are present simultaneously, they form dissociable heterodimers.


Biochemistry | 2013

Single-Molecule Studies of Bacterial Protein Translocation

Alexej Kedrov; Ilja Kusters; Arnold J. M. Driessen

In prokaryotes, a large share of the proteins are secreted from the cell through a process that requires their translocation across the cytoplasmic membrane. This process is mediated by the universally conserved Sec system with homologues in the endoplasmic reticulum and thylakoid membranes of eukaryotes. The Sec system also facilitates the membrane insertion of integral membrane proteins, an essential step along their folding pathway. In bacteria, the Sec system consists of the protein-conducting channel (SecYEG) that associates with soluble components, such as the motor protein SecA or translating ribosomes, and with integral membrane proteins, such as the heterotrimeric complex termed SecDFyajC and the YidC insertase. Over the past three decades, biochemical and structural studies have provided a comprehensive view of protein translocation, but the exact mechanistic details of this process remain to be resolved. For a number of other biomolecular systems, single-molecule biophysical analysis has efficiently complemented the conventional biochemical studies conducted in bulk, with high-sensitivity measurements probing the structure and dynamics of individual molecules in vitro and in vivo. Here, we review recent advances in studies of protein translocation employing single-molecule techniques with the aim of resolving molecular mechanisms, thereby providing a new and detailed view of the process.

Collaboration


Dive into the Ilja Kusters's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bert Poolman

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sander J. Tans

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge