Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilkka Leinonen is active.

Publication


Featured researches published by Ilkka Leinonen.


Poultry Science | 2012

Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: Egg production systems

Ilkka Leinonen; Adrian G. Williams; J. Wiseman; J. Guy; I. Kyriazakis

The aim of this study was to apply a life cycle assessment (LCA) method, from cradle to gate, to quantify the environmental burdens per 1,000 kg of eggs produced in the 4 major hen-egg production systems in the United Kingdom: 1) cage, 2) barn, 3) free range, and 4) organic. The analysis was based on an approach that applied a structural model for the industry and mechanistic submodels for animal performance, crop production, and nutrient flows. Baseline feeds representative of those used by the UK egg production industry were used. Typical figures from the UK egg production industry, feed intake, mortality of birds, farm energy, and material use in different systems were applied. Monte Carlo simulations were used to quantify the uncertainties in the outputs and allow for comparisons between the systems. The number of birds required to produce 1,000 kg of eggs was highest in the organic and lowest in the cage system; similarly, the amount of feed consumed per bird was highest in the organic and lowest in the cage system. These general differences in productivity largely affected the differences in the environmental impacts between the systems. Feed production, processing, and transport caused greater impacts compared with those from any other component of production; that is, 54 to 75% of the primary energy use and 64 to 72% of the global warming potential of the systems. Electricity (used mainly for ventilation, automatic feeding, and lighting) had the second greatest impact in primary energy use (16-38%). Gas and oil (used mainly for heating in pullet rearing and incineration of dead layer birds) used 7 to 14% of the total primary energy. Manure had the greatest impact on the acidification and eutrophication potentials of the systems because of ammonia emissions that contributed to both of these potentials and nitrate leaching that only affected eutrophication potential. The LCA method allows for comparisons between systems and for the identification of hotspots of environmental impacts that could be subject to mitigation.


Agronomy for Sustainable Development | 2016

Breeding for efficiency in the broiler chicken: A review

Craig Tallentire; Ilkka Leinonen; I. Kyriazakis

Artificial selection of broiler chickens for commercial objectives has been employed at an unprecedented magnitude over the recent decades. Consequently, the number of days, total feed and in turn energy, required to raise a broiler to slaughter weight, have decreased dramatically. Feed provision is the poultry industry’s biggest environmental hotspot; hence, understanding the interactions between the birds’ genetic change and their energy use efficiency forms the necessary starting point for quantifying and predicting and thereby mitigating the future environmental impact of the poultry sector. This review assesses the consequences of artificial selection on the following traits: digestive efficiency, body composition and utilisation of metabolisable energy for growth and metabolic activity. The main findings were (1) the digestive system has been subjected to much physical change due to selection in the recent decades, but this has not led to any apparent change in digestion efficiency. (2) Both the energy intake per day and the metabolic heat production rate have increased in the recent decades whilst (3) the efficiency of utilising energy for growth has also increased; this is due to an increased growth rate, so that broilers reach slaughter weight more quickly and therefore need to allocate less energy overall to metabolic processes, with the exception of growth. (4) There may have been a reduction in the tendency to waste feed through spillage and carry out energetically expensive behaviors. There is a discrepancy in the literature with regards to the influence of selection on body composition and its contribution to feed efficiency. In this review, two scenarios are demonstrated, whereby body composition either has or has not altered via artificial selection. Understanding the effects of artificial selection on the traits that relate to the feed efficiency of the broilers will contribute towards the reduction of the environmental impacts that arise from such systems.


Journal of Animal Science | 2015

Accounting for uncertainty in the quantification of the environmental impacts of Canadian pig farming systems

Stephen Mackenzie; Ilkka Leinonen; Neil Ferguson; I. Kyriazakis

The objective of the study was to develop a life cycle assessment (LCA) for pig farming systems that would account for uncertainty and variability in input data and allow systematic environmental impact comparisons between production systems. The environmental impacts of commercial pig production for 2 regions in Canada (Eastern and Western) were compared using a cradle-to-farm gate LCA. These systems had important contrasting characteristics such as typical feed ingredients used, herd performance, and expected emission factors from manure management. The study used detailed production data supplied by the industry and incorporated uncertainty/variation in all major aspects of the system including life cycle inventory data for feed ingredients, animal performance, energy inputs, and emission factors. The impacts were defined using 5 metrics-global warming potential, acidification potential, eutrophication potential (EP), abiotic resource use, and nonrenewable energy use-and were expressed per kilogram carcass weight at farm gate. Eutrophication potential was further separated into marine EP (MEP) and freshwater EP (FEP). Uncertainties in the model inputs were separated into 2 types: uncertainty in the data used to describe the system (α uncertainties) and uncertainty in impact calculations or background data that affects all systems equally (β uncertainties). The impacts of pig production in the 2 regions were systematically compared based on the differences in the systems (α uncertainties). The method of ascribing uncertainty influenced the outcomes. In eastern systems, EP, MEP, and FEP were lower (P < 0.05) when assuming that all uncertainty in the emission factors for leaching from manure application was β. This was mainly due to increased EP resulting from field emissions for typical ingredients in western diets. When uncertainty in these emission factors was assumed to be α, only FEP was lower in eastern systems (P < 0.05). The environmental impacts for the other impact categories were not significantly different between the 2 systems, despite their aforementioned differences. In conclusion, a probabilistic approach was used to develop an LCA that systematically dealt with uncertainty in the data when comparing multiple environmental impacts measures in pig farming systems for the first time. The method was used to identify differences between Canadian pig production systems but can also be applied for comparisons between other agricultural systems that include inherent variation.


International Journal of Life Cycle Assessment | 2017

The need for co-product allocation in the life cycle assessment of agricultural systems—is “biophysical” allocation progress?

Stephen Mackenzie; Ilkka Leinonen; I. Kyriazakis

PurposeSeveral new “biophysical” co-product allocation methodologies have been developed for LCA studies of agricultural systems based on proposed physical or causal relationships between inputs and outputs (i.e. co-products). These methodologies are thus meant to be preferable to established allocation methodologies such as economic allocation under the ISO 14044 standard. The aim here was to examine whether these methodologies really represent underlying physical relationships between the material and energy flows and the co-products in such systems, and hence are of value.MethodsTwo key components of agricultural LCAs which involve co-product allocation were used to provide examples of the methodological challenges which arise from adopting biophysical allocation in agricultural LCA: (1) the crop production chain and (2) the multiple co-products produced by animals. The actual “causal” relationships in these two systems were illustrated, the energy flows within them detailed, and the existing biophysical allocation methods, as found in literature, were critically evaluated in the context of such relationships.Results and discussionThe premise of many biophysical allocation methodologies has been to define relationships which describe how the energy input to agricultural systems is partitioned between co-products. However, we described why none of the functional outputs from animal or crop production can be considered independently from the rest on the basis of the inputs to the system. Using the example of manure in livestock systems, we also showed why biophysical allocation methodologies are still sensitive to whether a system output has economic value or not. This sensitivity is a longstanding criticism of economic allocation which is not resolved by adopting a biophysical approach.ConclusionsThe biophysical allocation methodologies for various aspects of agricultural systems proposed to date have not adequately explained how the physical parameters chosen in each case represent causal physical mechanisms in these systems. Allocation methodologies which are based on shared (but not causal) physical properties between co-products are not preferable to allocation based on non-physical properties within the ISO hierarchy on allocation methodologies and should not be presented as such.


Poultry Science | 2014

The effects of welfare-enhancing system changes on the environmental impacts of broiler and egg production

Ilkka Leinonen; Adrian G. Williams; I. Kyriazakis

The environmental impacts of 2 alternative UK broiler production systems that aim to improve bird welfare (a lower stocking density indoor system and the same system combined with heat exchangers for ventilation air) were compared with the baseline standard indoor system of broiler production. Furthermore, the environmental impacts of egg production in the conventional battery cage system (banned in the European Union in 2012) and its replacement, the enriched colony cage system, were compared. All comparisons were based on data obtained from the UK poultry industry, and the life cycle assessment method from cradle to farm gate was applied in the analyses. The results show that the lower density system slightly increased the global warming potential (GWP) of broiler production (by 2%), compared with the standard indoor system, due to increased heating requirements. However, when combined with the heat exchanger, the GWP was actually reduced by 3% when compared with the standard system. Both alternative systems for broilers resulted in a reduction in the eutrophication potential (by up to 8%) and acidification potential (by up to 10%). The results also showed that the colony cage system had 8% lower primary energy use and 3% lower GWP than the baseline cage system, due to better energy use efficiency and slightly improved productivity. There were only minor differences in the eutrophication and acidification potentials between different egg production systems. The results suggest that welfare-friendly changes in chicken systems can be achieved without a compromise in their environmental impacts.


Animal | 2014

Modelling phosphorus intake, digestion, retention and excretion in growing and finishing pigs: model description

Vasilis Symeou; Ilkka Leinonen; I. Kyriazakis

Low phosphorus (P) digestibility combined with intensive pig production can increase P diffuse pollution and environmental load. The aim of this paper was to develop a deterministic, dynamic model able to represent P digestion, retention and ultimately excretion in growing and finishing pigs of different genotypes, offered access to diets of different composition. The model represented the limited ability of pig endogenous phytase activity to dephosphorylate phytate as a linear function of dietary calcium (Ca). Phytate dephosphorylation in the stomach by exogenous microbial phytase enzymes was expressed by a first order kinetics relationship. The absorption of non-phytate P from the lumen of the small intestine into the blood stream was set at 0.8 and the dephosphorylated phytate from the large intestine was assumed to be indigestible. The net efficiency of using digested P was set at 0.94 and assumed to be independent of BW, and constant across genotype and sex. P requirements for both maintenance and growth were made simple functions of body protein mass, and hence functions of animal genotype. Undigested P was assumed to be excreted in the feaces in both soluble and insoluble forms. If digestible P exceeded the requirements for P then the excess digestible P was excreted through the urinary flow; thus the model represented both forms of P excretion (soluble and insoluble) into the environment. Using a UK industry standard diet, model behaviour was investigated for its predictions of P digestibility, retention and excretion under different levels of inclusion of microbial phytase and dietary Ca, and different non-phytate P : phytate ratios in the diet, thus covering a broad space of potential diet compositions. Model predictions were consistent with our understanding of P digestion, metabolism and excretion. Uncertainties associated with the underlying assumptions of the model were identified. Their consequences on model predictions, as well as the model evaluation are assessed in a companion paper.


Journal of the Science of Food and Agriculture | 2015

Effects of dietary protease on nitrogen emissions from broiler production: a holistic comparison using Life Cycle Assessment.

Ilkka Leinonen; Adrian G. Williams

BACKGROUND The aim of the study was to quantify the effects of the use of a protease Ronozyme® ProAct in broiler feed on the environmental impacts of broiler and broiler feed production chains. This was done by using a Life Cycle Assessment (LCA) modelling approach with data from trials using both standard soya-based broiler diets and reduced-protein diets with added protease. RESULTS The results for the feed production chain showed that there was a reduction in all environmental impact categories when protease was used in the diets. The biggest reduction occurred in the category of Global Warming Potential, mainly as a result of decreased carbon dioxide emissions from land use changes related to soya production. In the results for the broiler production chain, there were relatively bigger reductions in Eutrophication Potential and especially in Acidification Potential, mainly as a result of reduced feed protein content and subsequent nitrogen emissions from housing and manure management. CONCLUSION The use of protease in the broiler diets reduced the environmental impacts of both feed production and broiler production. The latter is mainly through reduced ammonia emissions, which has substantial benefit per se in the poultry industry.


Proceedings of the Nutrition Society | 2016

How can we improve the environmental sustainability of poultry production

Ilkka Leinonen; I. Kyriazakis

The review presents results of recent life cycle assessment studies aiming to quantify and improve the environmental performance of UK poultry production systems, including broiler meat, egg and turkey meat production. Although poultry production has been found to be relatively environmentally friendly compared with the production of other livestock commodities, it still contributes to environmental impacts, such as global warming, eutrophication and acidification. Amongst different sub-processes, feed production and transport contributes about 70 % to the global warming potential of poultry systems, whereas manure management contributes about 40-60 % to their eutrophication potential and acidification potential, respectively. All these impacts can be reduced by improving the feed efficiency, either by changing the birds through genetic selection or by making the feed more digestible (e.g. by using additives such as enzymes). However, although genetic selection has the potential to reduce the resources needed for broiler production (including feed consumption), the changing need of certain feed ingredients, most notably protein sources as a result of changes in bird requirements may limit the benefits of this strategy. The use of alternative feed ingredients, such as locally grown protein crops and agricultural by-products, as a replacement of South American grown soya, can potentially also lead to improvements in several environmental impact categories, as long as such feeding strategies have no negative effect on bird performance. Other management options, such as improving poultry housing and new strategies for manure management have also the potential to further improve the environmental sustainability of the poultry industries in Europe.


Scientific Reports | 2018

Artificial selection for improved energy efficiency is reaching its limits in broiler chickens

Craig Tallentire; Ilkka Leinonen; I. Kyriazakis

Modern broiler chickens are a major animal husbandry success story, both in terms of efficient resource utilisation and environmental sustainability. However, continuing artificial selection for both efficiency and rapid growth will be subject to both biological limits and animal welfare concerns. Using a novel analytical energy flow modelling approach, we predict how far such selection can go, given the biological limits of bird energy intake and partitioning of energy. We find that the biological potential for further improvements in efficiency, and hence environmental impact reduction, is minimal relative to past progress already made via artificial selection. An alternative breeding strategy to produce slower-growing birds to meet new welfare standards increases environmental burdens, compared to current birds. This unique analytic approach provides biologically sound guidelines for strategic planning of sustainable broiler production.


British Journal of Nutrition | 2016

Towards a methodology to formulate sustainable diets for livestock: accounting for environmental impact in diet formulation

Stephen Mackenzie; Ilkka Leinonen; N. Ferguson; I. Kyriazakis

The objective of this study was to develop a novel methodology that enables pig diets to be formulated explicitly for environmental impact objectives using a Life Cycle Assessment (LCA) approach. To achieve this, the following methodological issues had to be addressed: (1) account for environmental impacts caused by both ingredient choice and nutrient excretion, (2) formulate diets for multiple environmental impact objectives and (3) allow flexibility to identify the optimal nutritional composition for each environmental impact objective. An LCA model based on Canadian pig farms was integrated into a diet formulation tool to compare the use of different ingredients in Eastern and Western Canada. By allowing the feed energy content to vary, it was possible to identify the optimum energy density for different environmental impact objectives, while accounting for the expected effect of energy density on feed intake. A least-cost diet was compared with diets formulated to minimise the following objectives: non-renewable resource use, acidification potential, eutrophication potential, global warming potential and a combined environmental impact score (using these four categories). The resulting environmental impacts were compared using parallel Monte Carlo simulations to account for shared uncertainty. When optimising diets to minimise a single environmental impact category, reductions in the said category were observed in all cases. However, this was at the expense of increasing the impact in other categories and higher dietary costs. The methodology can identify nutritional strategies to minimise environmental impacts, such as increasing the nutritional density of the diets, compared with the least-cost formulation.

Collaboration


Dive into the Ilkka Leinonen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. W. Johnson

East Malling Research Station

View shared research outputs
Top Co-Authors

Avatar

Celia James

East Malling Research Station

View shared research outputs
Top Co-Authors

Avatar

D. W. Simpson

East Malling Research Station

View shared research outputs
Top Co-Authors

Avatar

J. Wiseman

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Michael J. Davies

East Malling Research Station

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vera Eory

Scotland's Rural College

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge