Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilsa I. Rovira is active.

Publication


Featured researches published by Ilsa I. Rovira.


Circulation Research | 2005

Redox-Dependent Transcriptional Regulation

Hongjun Liu; Renata Colavitti; Ilsa I. Rovira; Toren Finkel

Reactive oxygen species contribute to the pathogenesis of a number of disparate disorders including tissue inflammation, heart failure, hypertension, and atherosclerosis. In response to oxidative stress, cells activate expression of a number of genes, including those required for the detoxification of reactive molecules as well as for the repair and maintenance of cellular homeostasis. In many cases, these induced genes are regulated by transcription factors whose structure, subcellular localization, or affinity for DNA is directly or indirectly regulated by the level of oxidative stress. This review summarizes the recent progress on how cellular redox status can regulate transcription-factor activity and the implications of this regulation for cardiovascular disease.


Nature | 2009

Bmi1 regulates mitochondrial function and the DNA damage response pathway

Jie Liu; Liu Cao; Jichun Chen; Shiwei Song; In Hye Lee; Celia Quijano; Hongjun Liu; Keyvan Keyvanfar; Haoqian Chen; Long-Yue Cao; Bong-Hyun Ahn; Neil G. Kumar; Ilsa I. Rovira; Xiao-Ling Xu; Maarten van Lohuizen; Noboru Motoyama; Chu-Xia Deng; Toren Finkel

Mice deficient in the Polycomb repressor Bmi1 develop numerous abnormalities including a severe defect in stem cell self-renewal, alterations in thymocyte maturation and a shortened lifespan. Previous work has implicated de-repression of the Ink4a/Arf (also known as Cdkn2a) locus as mediating many of the aspects of the Bmi1-/- phenotype. Here we demonstrate that cells derived from Bmi1-/- mice also have impaired mitochondrial function, a marked increase in the intracellular levels of reactive oxygen species and subsequent engagement of the DNA damage response pathway. Furthermore, many of the deficiencies normally observed in Bmi1-/- mice improve after either pharmacological treatment with the antioxidant N-acetylcysteine or genetic disruption of the DNA damage response pathway by Chk2 (also known as Chek2) deletion. These results demonstrate that Bmi1 has an unexpected role in maintaining mitochondrial function and redox homeostasis and indicate that the Polycomb family of proteins can coordinately regulate cellular metabolism with stem and progenitor cell function.


Science | 2012

Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress

In Hye Lee; Yoshichika Kawai; Maria M. Fergusson; Ilsa I. Rovira; Alexander James Roy Bishop; Noboru Motoyama; Liu Cao; Toren Finkel

Starvation and Autophagy Starvation stimulates withdrawal from the cell cycle, as well as stimulating autophagy. Are these two events connected? Lee et al. (p. 225) show a direct and nutrient-sensitive interaction between the tumor suppressor p53 and the essential autophagy gene Atg7. Further, in the absence of Atg7, the p53-dependent induction of the cyclin-dependent kinase inhibitor p21 is inhibited. This leads to Atg7-deficient cells being unable to properly withdraw from the cell cycle under starved conditions. While Atg7 deletion leads to an impairment of p53-mediated cell-cycle arrest, the Atg7-deficient cells hyperactivate p53-mediated cell-death pathways. The physiological importance of this hyperactivation is underscored by the observation that genetic blocking of p53-mediated cell death significantly extended neonatal survival of mice in which Atg7 had been deleted. When the autophagy protein tg7 is absent, nutrient withdrawal does not stop the cell cycle. Withdrawal of nutrients triggers an exit from the cell division cycle, the induction of autophagy, and eventually the activation of cell death pathways. The relation, if any, among these events is not well characterized. We found that starved mouse embryonic fibroblasts lacking the essential autophagy gene product Atg7 failed to undergo cell cycle arrest. Independent of its E1-like enzymatic activity, Atg7 could bind to the tumor suppressor p53 to regulate the transcription of the gene encoding the cell cycle inhibitor p21CDKN1A. With prolonged metabolic stress, the absence of Atg7 resulted in augmented DNA damage with increased p53-dependent apoptosis. Inhibition of the DNA damage response by deletion of the protein kinase Chk2 partially rescued postnatal lethality in Atg7−/− mice. Thus, when nutrients are limited, Atg7 regulates p53-dependent cell cycle and cell death pathways.


Circulation Research | 1999

A Role for Reactive Oxygen Species in Endothelial Cell Anoikis

Arthur Li; Hideaki Ito; Ilsa I. Rovira; Kyung Soo Kim; Kazuyo Takeda; Zu-Yi Yu; Victor J. Ferrans; Toren Finkel

When adherent cells, such as epithelial or endothelial cells, are detached and continuously maintained in suspension, they undergo a form of programmed cell death termed anoikis. We demonstrate that coincident with endothelial cell detachment, there is a dramatic rise in the intracellular level of reactive oxygen species (ROS). Reattachment to a solid surface rapidly attenuates the level of ROS. The mitochondria appear to be the major source of the detachment-induced rise in ROS. The change in the intracellular redox state appears to contribute to endothelial anoikis, because treatment with either the cell-permeant antioxidant N-acetylcysteine or the flavin protein inhibitor diphenylene iodonium is demonstrated to reduce oxidant levels and protect against subsequent cell death. Similarly, the endogenous intracellular level of ROS is shown to correlate with the extent of cell death. Finally, we demonstrate that the activities of both caspases and of the c-Jun N-terminal kinases are modulated by the rise in intracellular ROS levels. These results suggest that oxidants serve as signaling molecules and regulators of anoikis.


Journal of Clinical Investigation | 1998

A requirement for the rac1 GTPase in the signal transduction pathway leading to cardiac myocyte hypertrophy.

J B Pracyk; Koichi Tanaka; Donald D. Hegland; Kyung Soo Kim; Rachna Sethi; Ilsa I. Rovira; D R Blazina; L Lee; Joseph T. Bruder; Imre Kovesdi; P J Goldshmidt-Clermont; Kaikobad Irani; Toren Finkel

We have used adenoviral-mediated gene transfer of a constitutively active (V12rac1) and dominant negative (N17rac1) isoform of rac1 to assess the role of this small GTPase in cardiac myocyte hypertrophy. Expression of V12rac1 in neonatal cardiac myocytes results in sarcomeric reorganization and an increase in cell size that is indistinguishable from ligand-stimulated hypertrophy. In addition, V12rac1 expression leads to an increase in atrial natriuretic peptide secretion. In contrast, expression of N17rac1, but not a truncated form of Raf-1, attenuated the morphological hypertrophy associated with phenylephrine stimulation. Consistent with the observed effects on morphology, expression of V12rac1 resulted in an increase in new protein synthesis, while N17rac1 expression inhibited phenylephrine-induced leucine incorporation. These results suggest rac1 is an essential element of the signaling pathway leading to cardiac myocyte hypertrophy.


Developmental Cell | 2002

Oxidants Painting the Cysteine Chapel: Redox Regulation of PTPs

Dong Xu; Ilsa I. Rovira; Toren Finkel

Growth factors and cytokines appear to stimulate the intracellular production of reactive oxygen species (ROS). Evidence suggests that this alteration in the cellular redox state is essential for downstream signaling, but the precise mechanism has remained elusive. A new study now demonstrates that ligand-stimulated intracellular hydrogen peroxide can specifically and reversibly regulate the activity of protein tyrosine phosphatases.


Cell Reports | 2013

Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression.

J. Julie Wu; Jie Liu; Edmund Chen; Jennifer J. Wang; Liu Cao; Nisha Narayan; Marie M. Fergusson; Ilsa I. Rovira; Michele D. Allen; Danielle A. Springer; Cory U. Lago; Shuling Zhang; Wendy Dubois; Theresa M. Ward; Rafael DeCabo; Oksana Gavrilova; Beverly A. Mock; Toren Finkel

We analyzed aging parameters using a mechanistic target of rapamycin (mTOR) hypomorphic mouse model. Mice with two hypomorphic (mTOR(Δ/Δ)) alleles are viable but express mTOR at approximately 25% of wild-type levels. These animals demonstrate reduced mTORC1 and mTORC2 activity and exhibit an approximately 20% increase in median survival. While mTOR(Δ/Δ) mice are smaller than wild-type mice, these animals do not demonstrate any alterations in normalized food intake, glucose homeostasis, or metabolic rate. Consistent with their increased lifespan, mTOR(Δ/Δ) mice exhibited a reduction in a number of aging tissue biomarkers. Functional assessment suggested that, as mTOR(Δ/Δ) mice age, they exhibit a marked functional preservation in many, but not all, organ systems. Thus, in a mammalian model, while reducing mTOR expression markedly increases overall lifespan, it affects the age-dependent decline in tissue and organ function in a segmental fashion.


Molecular Cell | 2015

Measuring In Vivo Mitophagy

Nuo Sun; Jeanho Yun; Jie Liu; Daniela Malide; Chengyu Liu; Ilsa I. Rovira; Kira M. Holmström; Maria M. Fergusson; Young Hyun Yoo; Christian A. Combs; Toren Finkel

Alterations in mitophagy have been increasingly linked to aging and age-related diseases. There are, however, no convenient methods to analyze mitophagy in vivo. Here, we describe a transgenic mouse model in which we expressed a mitochondrial-targeted form of the fluorescent reporter Keima (mt-Keima). Keima is a coral-derived protein that exhibits both pH-dependent excitation and resistance to lysosomal proteases. Comparison of a wide range of primary cells and tissues generated from the mt-Keima mouse revealed significant variations in basal mitophagy. In addition, we have employed the mt-Keima mice to analyze how mitophagy is altered by conditions including diet, oxygen availability, Huntingtin transgene expression, the absence of macroautophagy (ATG5 or ATG7 expression), an increase in mitochondrial mutational load, the presence of metastatic tumors, and normal aging. The ability to assess mitophagy under a host of varying environmental and genetic perturbations suggests that the mt-Keima mouse should be a valuable resource.


Nature | 2012

The NAD-dependent deacetylase SIRT2 is required for programmed necrosis

Nisha Narayan; In Hye Lee; Ronen Borenstein; Junhui Sun; Renee Wong; Guang Tong; Maria M. Fergusson; Jie Liu; Ilsa I. Rovira; Hwei Ling Cheng; Guanghui Wang; Marjan Gucek; David B. Lombard; Fredrick W. Alt; Michael N. Sack; Elizabeth Murphy; Liu Cao; Toren Finkel

Although initially viewed as unregulated, increasing evidence suggests that cellular necrosis often proceeds through a specific molecular program. In particular, death ligands such as tumour necrosis factor (TNF)-α activate necrosis by stimulating the formation of a complex containing receptor-interacting protein 1 (RIP1) and receptor-interacting protein 3 (RIP3). Relatively little is known regarding how this complex formation is regulated. Here, we show that the NAD-dependent deacetylase SIRT2 binds constitutively to RIP3 and that deletion or knockdown of SIRT2 prevents formation of the RIP1–RIP3 complex in mice. Furthermore, genetic or pharmacological inhibition of SIRT2 blocks cellular necrosis induced by TNF-α. We further demonstrate that RIP1 is a critical target of SIRT2-dependent deacetylation. Using gain- and loss-of-function mutants, we demonstrate that acetylation of RIP1 lysine 530 modulates RIP1–RIP3 complex formation and TNF-α-stimulated necrosis. In the setting of ischaemia-reperfusion injury, RIP1 is deacetylated in a SIRT2-dependent fashion. Furthermore, the hearts of Sirt2−/− mice, or wild-type mice treated with a specific pharmacological inhibitor of SIRT2, show marked protection from ischaemic injury. Taken together, these results implicate SIRT2 as an important regulator of programmed necrosis and indicate that inhibitors of this deacetylase may constitute a novel approach to protect against necrotic injuries, including ischaemic stroke and myocardial infarction.


Nature Medicine | 2013

Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor

Takehiro Torisu; Kumiko Torisu; In Hye Lee; Jie Liu; Daniela Malide; Christian A. Combs; Xufeng S Wu; Ilsa I. Rovira; Maria M. Fergusson; Roberto Weigert; Patricia S. Connelly; Mathew P. Daniels; Masaaki Komatsu; Liu Cao; Toren Finkel

Endothelial secretion of von Willebrand factor (VWF) from intracellular organelles known as Weibel-Palade bodies (WPBs) is required for platelet adhesion to the injured vessel wall. Here we demonstrate that WPBs are often found near or within autophagosomes and that endothelial autophagosomes contain abundant VWF protein. Pharmacological inhibitors of autophagy or knockdown of the essential autophagy genes Atg5 or Atg7 inhibits the in vitro secretion of VWF. Furthermore, although mice with endothelial-specific deletion of Atg7 have normal vessel architecture and capillary density, they exhibit impaired epinephrine-stimulated VWF release, reduced levels of high–molecular weight VWF multimers and a corresponding prolongation of bleeding times. Endothelial-specific deletion of Atg5 or pharmacological inhibition of autophagic flux results in a similar in vivo alteration of hemostasis. Thus, autophagy regulates endothelial VWF secretion, and transient pharmacological inhibition of autophagic flux may be a useful strategy to prevent thrombotic events.

Collaboration


Dive into the Ilsa I. Rovira's collaboration.

Top Co-Authors

Avatar

Toren Finkel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liu Cao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Maria M. Fergusson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

In Hye Lee

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Murphy

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Daniela Malide

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Junhui Sun

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Marjan Gucek

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nisha Narayan

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge