Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Malide is active.

Publication


Featured researches published by Daniela Malide.


Nature Medicine | 2001

A novel influenza A virus mitochondrial protein that induces cell death

Weisan Chen; Paul A. Calvo; Daniela Malide; James Gibbs; Ulrich Schubert; Igor Bacik; Sameh Basta; Robert E. O'Neill; Jeanne H. Schickli; Peter Palese; Peter Henklein; Jack R. Bennink; Jonathan W. Yewdell

While searching for alternative reading-frame peptides encoded by influenza A virus that are recognized by CD8+ T cells, we found an abundant immunogenic peptide encoded by the +1 reading frame of PB1. This peptide derives from a novel conserved 87-residue protein, PB1-F2, which has several unusual features compared with other influenza gene products in addition to its mode of translation. These include its absence from some animal (particularly swine) influenza virus isolates, variable expression in individual infected cells, rapid proteasome-dependent degradation and mitochondrial localization. Exposure of cells to a synthetic version of PB1-F2 induces apoptosis, and influenza viruses with targeted mutations that interfere with PB1-F2 expression induce less extensive apoptosis in human monocytic cells than those with intact PB1-F2. We propose that PB1-F2 functions to kill host immune cells responding to influenza virus infection.


Nature Immunology | 2002

Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo

Christopher C. Norbury; Daniela Malide; James S. Gibbs; Jack R. Bennink; Jonathan W. Yewdell

The rational design of vaccines that elicit CD8+ T cell responses requires knowledge of the identity of the antigen-presenting cell (APC), the location and time of presentation and the nature of the antigen presented by the APC. Here we address these questions for an antigen encoded by a recombinant vaccinia virus. We found that, following local infection, vaccinia virus infected macrophages and dendritic cells in draining lymph nodes. However, only the dendritic cells presented antigen to naïve CD8+ T cells, as determined by direct visualization of sectioned nodes by confocal microscopy. Presentation occurred as rapidly as 6 h after inoculation and quickly declined in parallel with the number of infected cells present in the nodes. These data provide direct evidence that virus-infected APCs prime naïve CD8+ T cells in vivo.


Journal of Virology | 2003

The influenza A virus PB1-F2 protein targets the inner mitochondrial membrane via a predicted basic amphipathic helix that disrupts mitochondrial function.

James Gibbs; Daniela Malide; Felicita Hornung; Jack R. Bennink; Jonathan W. Yewdell

ABSTRACT The 11th influenza A virus gene product is an 87-amino-acid protein provisionally named PB1-F2 (because it is encoded by an open reading frame overlapping the PB1 open reading frame). A significant fraction of PB1-F2 localizes to the inner mitochondrial membrane in influenza A virus-infected cells. PB1-F2 appears to enhance virus-induced cell death in a cell type-dependent manner. For the present communication we have identified and characterized a region near the COOH terminus of PB1-F2 that is necessary and sufficient for its inner mitochondrial membrane localization, as determined by transient expression of chimeric proteins consisting of elements of PB1-F2 genetically fused to enhanced green fluorescent protein (EGFP) in HeLa cells. Targeting of EGFP to mitochondria by this sequence resulted in the loss of the inner mitochondrial membrane potential, leading to cell death. The mitochondrial targeting sequence (MTS) is predicted to form a positively charged amphipathic α-helix and, as such, is similar to the MTS of the p13II protein of human T-cell leukemia virus type 1. We formally demonstrate the functional interchangeability of the two sequences for mitochondrial localization of PB1-F2. Mutation analysis of the putative amphipathic helix in the PB1-F2 reveals that replacement of five basic amino acids with Ala abolishes mitochondrial targeting, whereas mutation of two highly conserved Leu to Ala does not. These findings demonstrate that PB1-F2 possesses an MTS similar to other viral proteins and that this MTS, when fused to EGFP, is capable of independently compromising mitochondrial function and cellular viability.


Molecular Cell | 2015

Measuring In Vivo Mitophagy

Nuo Sun; Jeanho Yun; Jie Liu; Daniela Malide; Chengyu Liu; Ilsa I. Rovira; Kira M. Holmström; Maria M. Fergusson; Young Hyun Yoo; Christian A. Combs; Toren Finkel

Alterations in mitophagy have been increasingly linked to aging and age-related diseases. There are, however, no convenient methods to analyze mitophagy in vivo. Here, we describe a transgenic mouse model in which we expressed a mitochondrial-targeted form of the fluorescent reporter Keima (mt-Keima). Keima is a coral-derived protein that exhibits both pH-dependent excitation and resistance to lysosomal proteases. Comparison of a wide range of primary cells and tissues generated from the mt-Keima mouse revealed significant variations in basal mitophagy. In addition, we have employed the mt-Keima mice to analyze how mitophagy is altered by conditions including diet, oxygen availability, Huntingtin transgene expression, the absence of macroautophagy (ATG5 or ATG7 expression), an increase in mitochondrial mutational load, the presence of metastatic tumors, and normal aging. The ability to assess mitophagy under a host of varying environmental and genetic perturbations suggests that the mt-Keima mouse should be a valuable resource.


Nature Medicine | 2013

Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor

Takehiro Torisu; Kumiko Torisu; In Hye Lee; Jie Liu; Daniela Malide; Christian A. Combs; Xufeng S Wu; Ilsa I. Rovira; Maria M. Fergusson; Roberto Weigert; Patricia S. Connelly; Mathew P. Daniels; Masaaki Komatsu; Liu Cao; Toren Finkel

Endothelial secretion of von Willebrand factor (VWF) from intracellular organelles known as Weibel-Palade bodies (WPBs) is required for platelet adhesion to the injured vessel wall. Here we demonstrate that WPBs are often found near or within autophagosomes and that endothelial autophagosomes contain abundant VWF protein. Pharmacological inhibitors of autophagy or knockdown of the essential autophagy genes Atg5 or Atg7 inhibits the in vitro secretion of VWF. Furthermore, although mice with endothelial-specific deletion of Atg7 have normal vessel architecture and capillary density, they exhibit impaired epinephrine-stimulated VWF release, reduced levels of high–molecular weight VWF multimers and a corresponding prolongation of bleeding times. Endothelial-specific deletion of Atg5 or pharmacological inhibition of autophagic flux results in a similar in vivo alteration of hemostasis. Thus, autophagy regulates endothelial VWF secretion, and transient pharmacological inhibition of autophagic flux may be a useful strategy to prevent thrombotic events.


Journal of Histochemistry and Cytochemistry | 1997

Immunocytochemical Evidence that GLUT4 Resides in a Specialized Translocation Post-endosomal VAMP2-positive Compartment in Rat Adipose Cells in the Absence of Insulin

Daniela Malide; Nancy K. Dwyer; E. Joan Blanchette-Mackie; Samuel W. Cushman

Insulin stimulates glucose transport in rat adipose cells through the translocation of GLUT4 from a poorly defined intracellular compartment to the cell surface. We employed confocal microscopy to determine the in situ localization of GLUT4 relative to vesicle, Golgi, and endosomal proteins in these physiological insulin target cells. Three-dimensional analyses of GLUT4 immunostaining in basal cells revealed an intracellular punctate, patchy distribution both in the perinuclear region and scattered throughout the cytoplasm. VAMP2 closely associates with GLUT4 in many punctate vesicle-like structures. A small fraction of GLUT4 overlaps with TGN38-mannosidase ll, γ-adaptin, and mannose-6-phosphate receptors in the perinuclear region, presumably corresponding to late endosome and trans-Golgi network structures. GLUT4 does not co-localize with transferrin receptors, clathrin, and lgp-120. After insulin treatment, GLUT4 partially redistributes to the cell surface and decreases in the perinuclear area. However, GLUT4 remains co-localized with TGN38-mannosidase ll and γ-adaptin. Therefore, the basal compartment from which GLUT4 is translocated in response to insulin comprises specialized post-endosomal VAMP2-positive vesicles, distinct from the constitutively recycling endosomes. These results are consistent with a kinetic model in which GLUT4 is sequestered through two or more intracellular pools in series. (J Histochem Cytochem 45:1083–1096, 1997)


Nature | 2015

Mitochondrial reticulum for cellular energy distribution in muscle

Brian Glancy; Lisa M. Hartnell; Daniela Malide; Zu Xi Yu; Christian A. Combs; Patricia S. Connelly; Sriram Subramaniam; Robert S. Balaban

Intracellular energy distribution has attracted much interest and has been proposed to occur in skeletal muscle via metabolite-facilitated diffusion; however, genetic evidence suggests that facilitated diffusion is not critical for normal function. We hypothesized that mitochondrial structure minimizes metabolite diffusion distances in skeletal muscle. Here we demonstrate a mitochondrial reticulum providing a conductive pathway for energy distribution, in the form of the proton-motive force, throughout the mouse skeletal muscle cell. Within this reticulum, we find proteins associated with mitochondrial proton-motive force production preferentially in the cell periphery and proteins that use the proton-motive force for ATP production in the cell interior near contractile and transport ATPases. Furthermore, we show a rapid, coordinated depolarization of the membrane potential component of the proton-motive force throughout the cell in response to spatially controlled uncoupling of the cell interior. We propose that membrane potential conduction via the mitochondrial reticulum is the dominant pathway for skeletal muscle energy distribution.


Blood | 2010

Hematopoiesis in 3 dimensions: human and murine bone marrow architecture visualized by confocal microscopy

Tomoiku Takaku; Daniela Malide; Jichun Chen; Rodrigo T. Calado; Sachiko Kajigaya; Neal S. Young

In many animals, blood cell production occurs in the bone marrow. Hematopoiesis is complex, requiring self-renewing and pluripotent stem cells, differentiated progenitor and precursor cells, and supportive stroma, adipose tissue, vascular structures, and extracellular matrix. Although imaging is a vital tool in hematology research, the 3-dimensional architecture of the bone marrow tissue in situ remains largely uncharacterized. The major hindrance to imaging the intact marrow is the surrounding bone structures are almost impossible to cut/image through. We have overcome these obstacles and describe a method whereby whole-mounts of bone marrow tissue were immunostained and imaged in 3 dimensions by confocal fluorescence and reflection microscopy. We have successfully mapped by multicolor immunofluorescence the localization pattern of as many as 4 cell features simultaneously over large tiled views and to depths of approximately 150 μm. Three-dimensional images can be assessed qualitatively and quantitatively to appreciate the distribution of cell types and their interrelationships, with minimal perturbations of the tissue. We demonstrate its application to normal mouse and human marrow, to murine models of marrow failure, and to patients with aplastic anemia, myeloid, and lymphoid cell malignancies. The technique should be generally adaptable for basic laboratory investigation and for clinical diagnosis of hematologic diseases.


Blood | 2012

Mouse models of MYH9-related disease: mutations in nonmuscle myosin II-A

Yingfan Zhang; Mary Anne Conti; Daniela Malide; Fan Dong; Aibing Wang; Yelena Shmist; Chengyu Liu; Patricia M. Zerfas; Mathew P. Daniels; Chi-Chao Chan; Elliot Kozin; Bechara Kachar; Michael J. Kelley; Jeffrey B. Kopp; Robert S. Adelstein

We have generated 3 mouse lines, each with a different mutation in the nonmuscle myosin II-A gene, Myh9 (R702C, D1424N, and E1841K). Each line develops MYH9-related disease similar to that found in human patients. R702C mutant human cDNA fused with green fluorescent protein was introduced into the first coding exon of Myh9, and D1424N and E1841K mutations were introduced directly into the corresponding exons. Homozygous R702C mice die at embryonic day 10.5-11.5, whereas homozygous D1424N and E1841K mice are viable. All heterozygous and homozygous mutant mice show macrothrombocytopenia with prolonged bleeding times, a defect in clot retraction, and increased extramedullary megakaryocytes. Studies of cultured megakaryocytes and live-cell imaging of megakaryocytes in the BM show that heterozygous R702C megakaryocytes form fewer and shorter proplatelets with less branching and larger buds. The results indicate that disrupted proplatelet formation contributes to the macrothrombocytopenia in mice and most probably in humans. We also observed premature cataract formation, kidney abnormalities, including albuminuria, focal segmental glomerulosclerosis and progressive kidney disease, and mild hearing loss. Our results show that heterozygous mice with mutations in the myosin motor or filament-forming domain manifest similar hematologic, eye, and kidney phenotypes to humans with MYH9-related disease.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Abnormal lymphangiogenesis in idiopathic pulmonary fibrosis with insights into cellular and molecular mechanisms

Souheil El-Chemaly; Daniela Malide; Zudaire E; Yoshihiko Ikeda; Benjamin A. Weinberg; Gustavo Pacheco-Rodriguez; Ivan O. Rosas; Aparicio M; Ping Ren; Sandra D. MacDonald; Hai-Ping Wu; Steven D. Nathan; Cuttitta F; McCoy Jp; Bernadette R. Gochuico; Joel Moss

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, debilitating respiratory disease whose pathogenesis is poorly understood. In IPF, the lung parenchyma undergoes extensive remodeling. We hypothesized that lymphangiogenesis is part of lung remodeling and sought to characterize pathways leading to lymphangiogenesis in IPF. We found that the diameter of lymphatic vessels in alveolar spaces in IPF lung tissue correlated with disease severity, suggesting that the alveolar microenvironment plays a role in the lymphangiogenic process. In bronchoalveolar lavage fluid (BALF) from subjects with IPF, we found short-fragment hyaluronic acid, which induced migration and proliferation of lymphatic endothelial cells (LECs), processes required for lymphatic vessel formation. To determine the origin of LECs in IPF, we isolated macrophages from the alveolar spaces; CD11b+ macrophages from subjects with IPF, but not those from healthy volunteers, formed lymphatic-like vessels in vitro. Our findings demonstrate that in the alveolar microenvironment of IPF, soluble factors such as short-fragment hyaluronic acid and cells such as CD11b+ macrophages contribute to lymphangiogenesis. These results improve our understanding of lymphangiogenesis and tissue remodeling in IPF and perhaps other fibrotic diseases as well.

Collaboration


Dive into the Daniela Malide's collaboration.

Top Co-Authors

Avatar

Christian A. Combs

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Neal S. Young

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jichun Chen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Keyvan Keyvanfar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sachiko Kajigaya

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Samuel W. Cushman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ilsa I. Rovira

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Joel Moss

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Souheil El-Chemaly

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Toren Finkel

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge