Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilse Dewachter is active.

Publication


Featured researches published by Ilse Dewachter.


Journal of Clinical Investigation | 2004

A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model

Rolf Postina; Anja Schroeder; Ilse Dewachter; Juergen Bohl; Ulrich Schmitt; Elzbieta Kojro; Claudia Prinzen; Kristina Endres; Christoph Hiemke; Manfred Blessing; Pascaline Flamez; Antoine Dequenne; Emile Godaux; Fred Van Leuven; Falk Fahrenholz

Alzheimer disease (AD) is characterized by excessive deposition of amyloid beta-peptides (A beta peptides) in the brain. In the nonamyloidogenic pathway, the amyloid precursor protein (APP) is cleaved by the alpha-secretase within the A beta peptide sequence. Proteinases of the ADAM family (adisintegrin and metalloproteinase) are the main candidates as physiologically relevant alpha-secretases, but early lethality of knockout animals prevented a detailed analysis in neuronal cells. To overcome this restriction, we have generated transgenic mice that overexpress either ADAM10 or a catalytically inactive ADAM10 mutant. In this report we show that a moderate neuronal overexpression of ADAM10 in mice transgenic for human APP([V717I]) increased the secretion of the neurotrophic soluble alpha-secretase-released N-terminal APP domain (APPs alpha), reduced the formation of A beta peptides, and prevented their deposition in plaques. Functionally, impaired long-term potentiation and cognitive deficits were alleviated. Expression of mutant catalytically inactive ADAM10 led to an enhancement of the number and size of amyloid plaques in the brains of double-transgenic mice. The results provide the first in vivo evidence for a proteinase of the ADAM family as an alpha-secretase of APP, reveal activation of ADAM10 as a promising therapeutic target, and support the hypothesis that a decrease in alpha-secretase activity contributes to the development of AD.


The Journal of Neuroscience | 2002

Neuronal Deficiency of Presenilin 1 Inhibits Amyloid Plaque Formation and Corrects Hippocampal Long-Term Potentiation But Not a Cognitive Defect of Amyloid Precursor Protein [V717I] Transgenic Mice

Ilse Dewachter; Delphine Reversé; Nathalie Caluwaerts; Laurence Ris; Cuno Kuiperi; Chris Van den Haute; Kurt Spittaels; Lieve Umans; Lutgarde Serneels; Els Thiry; Dieder Moechars; M Mercken; Emile Godaux; Fred Van Leuven

In the brain of Alzheimers disease (AD) patients, neurotoxic amyloid peptides accumulate and are deposited as senile plaques. A major therapeutic strategy aims to decrease production of amyloid peptides by inhibition of γ-secretase. Presenilins are polytopic transmembrane proteins that are essential for γ-secretase activity during development and in amyloid production. By loxP/Cre-recombinase-mediated deletion, we generated mice with postnatal, neuron-specific presenilin-1 (PS1) deficiency, denoted PS1(n−/−), that were viable and fertile, with normal brain morphology. In adult PS1(n−/−) mice, levels of endogenous brain amyloid peptides were strongly decreased, concomitant with accumulation of amyloid precursor protein (APP) C-terminal fragments. In the cross of APP[V717I]xPS1 (n−/−) double transgenic mice, the neuronal absence of PS1 effectively prevented amyloid pathology, even in mice that were 18 months old. This contrasted sharply with APP[V717I] single transgenic mice that all develop amyloid pathology at the age of 10–12 months. In APP[V717I]xPS1 (n−/−) mice, long-term potentiation (LTP) was practically rescued at the end of the 2 hr observation period, again contrasting sharply with the strongly impaired LTP in APP[V717I] mice. The findings demonstrate the critical involvement of amyloid peptides in defective LTP in APP transgenic mice. Although these data open perspectives for therapy of AD by γ-secretase inhibition, the neuronal absence of PS1 failed to rescue the cognitive defect, assessed by the object recognition test, of the parent APP[V717I] transgenic mice. This points to potentially detrimental effects of accumulating APP C99 fragments and demands further study of the consequences of inhibition of γ-secretase activity. In addition, our data highlight the complex functional relation of APP and PS1 to cognition and neuronal plasticity in adult and aging brain.


Journal of Clinical Investigation | 2007

Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding

Thomas Gevaert; Joris Vriens; Andrei Segal; Wouter Everaerts; Tania Roskams; Karel Talavera; Grzegorz Owsianik; Wolfgang Liedtke; Dirk Daelemans; Ilse Dewachter; Fred Van Leuven; Thomas Voets; Dirk De Ridder; Bernd Nilius

Here we provide evidence for a critical role of the transient receptor potential cation channel, subfamily V, member 4 (TRPV4) in normal bladder function. Immunofluorescence demonstrated TRPV4 expression in mouse and rat urothelium and vascular endothelium, but not in other cell types of the bladder. Intracellular Ca2+ measurements on urothelial cells isolated from mice revealed a TRPV4-dependent response to the selective TRPV4 agonist 4alpha-phorbol 12,13-didecanoate and to hypotonic cell swelling. Behavioral studies demonstrated that TRPV4-/- mice manifest an incontinent phenotype but show normal exploratory activity and anxiety-related behavior. Cystometric experiments revealed that TRPV4-/- mice exhibit a lower frequency of voiding contractions as well as a higher frequency of nonvoiding contractions. Additionally, the amplitude of the spontaneous contractions in explanted bladder strips from TRPV4-/- mice was significantly reduced. Finally, a decreased intravesical stretch-evoked ATP release was found in isolated whole bladders from TRPV4-/- mice. These data demonstrate a previously unrecognized role for TRPV4 in voiding behavior, raising the possibility that TRPV4 plays a critical role in urothelium-mediated transduction of intravesical mechanical pressure.


Journal of Neuroinflammation | 2005

Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice

Michael T. Heneka; Magdalena Sastre; Lucia Dumitrescu-Ozimek; Ilse Dewachter; Jochen Walter; Thomas Klockgether; Fred Van Leuven

BackgroundInflammation is suspected to contribute to the progression and severity of neurodegeneration in Alzheimers disease (AD). Transgenic mice overexpressing the london mutant of amyloid precursor protein, APP [V717I], robustly recapitulate the amyloid pathology of AD.MethodsEarly and late, temporal and spatial characteristics of inflammation were studied in APP [V717I] mice at 3 and 16 month of age. Glial activation and expression of inflammatory markers were determined by immunohistochemistry and RT-PCR. Amyloid deposition was assessed by immunohistochemistry, thioflavine S staining and western blot experiments. BACE1 activity was detected in brain lysates and in situ using the BACE1 activity kit from R&D Systems, Wiesbaden, Germany.ResultsFoci of activated micro- and astroglia were already detected at age 3 months, before any amyloid deposition. Inflammation parameters comprised increased mRNA levels coding for interleukin-1β, interleukin-6, major histocompatibility complex II and macrophage-colony-stimulating-factor-receptor. Foci of CD11b-positive microglia expressed these cytokines and were neighbored by activated astrocytes. Remarkably, β-secretase (BACE1) mRNA, neuronal BACE1 protein at sites of focal inflammation and total BACE1 enzyme activity were increased in 3 month old APP transgenic mice, relative to age-matched non-transgenic mice. In aged APP transgenic mice, the mRNA of all inflammatory markers analysed was increased, accompanied by astroglial iNOS expression and NO-dependent peroxynitrite release, and with glial activation near almost all diffuse and senile Aβ deposits.ConclusionThe early and focal glial activation, in conjunction with upregulated BACE1 mRNA, protein and activity in the presence of its substrate APP, is proposed to represent the earliest sites of amyloid deposition, likely evolving into amyloid plaques.


American Journal of Pathology | 2000

Prominent Cerebral Amyloid Angiopathy in Transgenic Mice Overexpressing the London Mutant of Human APP in Neurons

Jo Van Dorpe; Liesbet Smeijers; Ilse Dewachter; Dieter Nuyens; Kurt Spittaels; Chris Van den Haute; Marc Mercken; Dieder Moechars; Isabelle Laenen; Cuno Kuiperi; Koen Bruynseels; Ina Tesseur; Ruth J. F. Loos; Hugo Vanderstichele; Frédéric Checler; Raf Sciot; Fred Van Leuven

Deposition of amyloid beta-peptide (Abeta) in cerebral vessel walls (cerebral amyloid angiopathy, CAA) is very frequent in Alzheimers disease and occurs also as a sporadic disorder. Here, we describe significant CAA in addition to amyloid plaques, in aging APP/Ld transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP) exclusively in neurons. The number of amyloid-bearing vessels increased with age, from approximately 10 to >50 per coronal brain section in APP/Ld transgenic mice, aged 13 to 24 months. Vascular amyloid was preferentially deposited in arterioles and ranged from small focal to large circumferential depositions. Ultrastructural analysis allowed us to identify specific features contributing to weakening of the vessel wall and aneurysm formation, ie, disruption of the external elastic lamina, thinning of the internal elastic lamina, interruption of the smooth muscle layer, and loss of smooth muscle cells. Biochemically, the much lower Abeta42:Abeta40 ratio evident in vascular relative to plaque amyloid, demonstrated that in blood vessel walls Abeta40 was the more abundant amyloid peptide. The exclusive neuronal origin of transgenic APP, the high levels of Abeta in cerebrospinal fluid compared to plasma, and the specific neuroanatomical localization of vascular amyloid strongly suggest specific drainage pathways, rather than local production or blood uptake of Abeta as the primary mechanism underlying CAA. The demonstration in APP/Ld mice of rare vascular amyloid deposits that immunostained only for Abeta42, suggests that, similar to senile plaque formation, Abeta42 may be the first amyloid to be deposited in the vessel walls and that it entraps the more soluble Abeta40. Its ability to diffuse for larger distances along perivascular drainage pathways would also explain the abundance of Abeta40 in vascular amyloid. Consistent with this hypothesis, incorporation of mutant presenilin-1 in APP/Ld mice, which resulted in selectively higher levels of Abeta42, caused an increase in CAA and senile plaques. This mouse model will be useful in further elucidating the pathogenesis of CAA and Alzheimers disease, and will allow testing of diagnostic and therapeutic strategies.


American Journal of Pathology | 2008

Amyloid Activates GSK-3β to Aggravate Neuronal Tauopathy in Bigenic Mice

Dick Terwel; David Muyllaert; Ilse Dewachter; Peter Borghgraef; Sophie Croes; Herman Devijver; Fred Van Leuven

The hypothesis that amyloid pathology precedes and induces the tau pathology of Alzheimers disease is experimentally supported here through the identification of GSK-3 isozymes as a major link in the signaling pathway from amyloid to tau pathology. This study compares two novel bigenic mouse models: APP-V717I x Tau-P301L mice with combined amyloid and tau pathology and GSK-3beta x Tau-P301L mice with tauopathy only. Extensive and remarkable parallels were observed between these strains including 1) aggravation of tauopathy with highly fibrillar tangles in the hippocampus and cortex; 2) prolonged survival correlated to alleviated brainstem tauopathy; 3) development of severe cognitive and behavioral defects in young adults before the onset of amyloid deposition or tauopathy; and 4) presence of pathological phospho-epitopes of tau, including the characteristic GSK-3beta motif at S396/S404. Both GSK-3 isozymes were activated in the brain of parental APP-V717I amyloid mice, even at a young age when cognitive and behavioral defects are evident but before amyloid deposition. The data indicate that amyloid induces tauopathy through activation of GSK-3 and suggest a role for the kinase in maintaining the functional integrity of adult neurons.


Molecular Psychiatry | 2013

Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology

Julien Chapuis; Franck Hansmannel; Marc Gistelinck; Anais Mounier; C Van Cauwenberghe; Kristof Van Kolen; F Geller; Y Sottejeau; D Harold; Pierre Dourlen; Benjamin Grenier-Boley; Yoichiro Kamatani; B Delepine; F Demiautte; Diana Zelenika; Nadège Zommer; Malika Hamdane; Céline Bellenguez; J.-F. Dartigues; J-J Hauw; F Letronne; A-M Ayral; K Sleegers; A Schellens; Lies Vanden Broeck; S. Engelborghs; P.P. De Deyn; Rik Vandenberghe; Michael Conlon O'Donovan; Michael John Owen

Genome-wide association studies (GWAS) have identified a region upstream the BIN1 gene as the most important genetic susceptibility locus in Alzheimer’s disease (AD) after APOE. We report that BIN1 transcript levels were increased in AD brains and identified a novel 3 bp insertion allele ∼28 kb upstream of BIN1, which increased (i) transcriptional activity in vitro, (ii) BIN1 expression levels in human brain and (iii) AD risk in three independent case-control cohorts (Meta-analysed Odds ratio of 1.20 (1.14–1.26) (P=3.8 × 10−11)). Interestingly, decreased expression of the Drosophila BIN1 ortholog Amph suppressed Tau-mediated neurotoxicity in three different assays. Accordingly, Tau and BIN1 colocalized and interacted in human neuroblastoma cells and in mouse brain. Finally, the 3 bp insertion was associated with Tau but not Amyloid loads in AD brains. We propose that BIN1 mediates AD risk by modulating Tau pathology.


Current Biology | 2011

The Capsaicin Receptor TRPV1 Is a Crucial Mediator of the Noxious Effects of Mustard Oil

Wouter Everaerts; Maarten Gees; Yeranddy A. Alpizar; Ricard Farré; Cindy Leten; Aurelia Apetrei; Ilse Dewachter; Fred Van Leuven; Rudi Vennekens; Dirk De Ridder; Bernd Nilius; Thomas Voets; Karel Talavera

Mustard oil (MO) is a plant-derived irritant that has been extensively used in experimental models to induce pain and inflammation. The noxious effects of MO are currently ascribed to specific activation of the cation channel TRPA1 in nociceptive neurons. In contrast to this view, we show here that the capsaicin receptor TRPV1 has a surprisingly large contribution to aversive and pain responses and visceral irritation induced by MO. Furthermore, we found that this can be explained by previously unknown properties of this compound. First, MO has a bimodal effect on TRPA1, producing current inhibition at millimolar concentrations. Second, it directly and stably activates mouse and human recombinant TRPV1, as well as TRPV1 channels in mouse sensory neurons. Finally, physiological temperatures enhance MO-induced TRPV1 stimulation. Our results refute the dogma that TRPA1 is the sole nocisensor for MO and motivate a revision of the putative roles of these channels in models of MO-induced pain and inflammation. We propose that TRPV1 has a generalized role in the detection of irritant botanical defensive traits and in the coevolution of multiple mammalian and plant species.


Magnetic Resonance in Medicine | 2005

Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP[V717I] transgenic mice, a model for Alzheimer's disease

Greetje Vanhoutte; Ilse Dewachter; Peter Borghgraef; F. Van Leuven; A. Van der Linden

Transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP[V717I]) in neurons develop amyloid plaques in the brain, thus demonstrating the most prominent neuropathological hallmark of Alzheimers disease. In vivo 3D T2*‐weighted MRI on these mice (24 months of age) revealed hypointense brain inclusions that affected the thalamus almost exclusively. Upon correlating these MRI observations with a panel of different histologic staining techniques, it appeared that only plaques that were positive for both thioflavin‐S and iron were visible on the MR images. Numerous thioflavin‐S‐positive plaques in the cortex that did not display iron staining remained invisible to MRI. The in vivo detection of amyloid plaques in this mouse model, using the intrinsic MRI contrast arising from the iron associated with the plaques, creates an unexpected opportunity for the noninvasive investigation of the longitudinal development of the plaques in the same animal. Thus, this work provides further research opportunities for analyzing younger APP[V717I] mouse models with the knowledge of the final outcome at 24 months of age. Magn Reson Med 53:607–613, 2005.


Genes, Brain and Behavior | 2008

Glycogen synthase kinase‐3β, or a link between amyloid and tau pathology?

David Muyllaert; Anneke Kremer; Tomasz Jaworski; Peter Borghgraef; Herman Devijver; Sophie Croes; Ilse Dewachter; F. Van Leuven

Phosphorylation is the most common post‐translational modification of cellular proteins, essential for most physiological functions. Deregulation of phosphorylation has been invoked in disease mechanisms, and the case of Alzheimer’s disease (AD) is no exception: both in the amyloid pathology and in the tauopathy are kinases deeply implicated. The glycogen synthase kinase‐3 (GSK‐3) isozymes participate in diverse cellular processes and important signalling pathways and have been implicitly linked to diverse medical problems, i.e. from diabetes and cancer to mood disorders and schizophrenia, and in the neurodegeneration of AD. Here, we review specific aspects of GSK‐3 isozymes in the framework of recent data that we obtained in novel transgenic mouse models that robustly recapitulate the pathology and mechanistical problems of AD.

Collaboration


Dive into the Ilse Dewachter's collaboration.

Top Co-Authors

Avatar

Fred Van Leuven

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Peter Borghgraef

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Herman Devijver

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

David Muyllaert

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

F. Van Leuven

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomasz Jaworski

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sophie Croes

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge