Ilundain A
University of Seville
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ilundain A.
Neuroscience | 1999
J.L. Venero; Marisa Vizuete; Ilundain A; Alberto Machado; Miriam Echevarría; Josefina Cano
We have performed a detailed in situ hybridization study of the distribution of aquaporin-4 messenger RNA in the CNS. Contrary to expectation, we demonstrate that aquaporin-4 is ubiquitously expressed in the CNS. Strong hybridization labeling was detected in multiple olfactory areas, cortical cells, medial habenular nucleus, bed nucleus of the stria terminalis, tenia tecta, pial surface, pontine nucleus, hippocampal formation and multiple thalamic and hypothalamic areas. A low but significant hybridization signal was found, among others, in the choroid plexus of the lateral ventricles, ependymal cells, dorsal raphe and cerebellum. Overall, a preferential distribution of aquaporin-4 messenger RNA-expressing cells was evident in numerous periventricular organs. From the distribution study, the presence of aquaporin-4 messenger RNA-expressing cells in neuronal layers was evident in neuronal layers including the CA1 -CA3 hippocampal pyramidal cells, granular dentate cells and cortical cells. Further evidence of neuronal expression comes from the semicircular arrangement of aquaporin-4 messenger RNA-expressing cells in the bed nucleus of the stria terminalis and medial habenular nucleus exhibiting Nissl-stained morphological features typical of neurons. Combined glial fibrillary acidic protein immunohistochemistry and aquaporin-4 messenger RNA in situ hybridization demonstrated that aquaporin-4 messenger RNA is expressed by glial fibrillary acidic protein-lacking cells. We conclude that aquaporin-4 messenger RNA is present in a collection of structures typically involved in the regulation of water and sodium intake and that aquaporin-4 water channels could be the osmosensor mechanism responsible for detecting changes in cell volume by these cells.
The Journal of Physiology | 2002
María J. Peral; M. García-Delgado; M.L. Calonge; J.M. Durán; M.C de la Horra; Theo Wallimann; Oliver Speer; Ilundain A
In spite of all the fascinating properties of oral creatine supplementation, the mechanism(s) mediating its intestinal absorption has(have) not been investigated. The purpose of this study was to characterize intestinal creatine transport. [14C]Creatine uptake was measured in chicken enterocytes and rat ileum, and expression of the creatine transporter CRT was examined in human, rat and chicken small intestine by reverse transcription‐polymerase chain reaction, Northern blot, in situ hybridization, immunoblotting and immunohistochemistry. Results show that enterocytes accumulate creatine against its concentration gradient. This accumulation was electrogenic, Na+‐ and Cl−‐dependent, with a probable stoichiometry of 2 Na+: 1 Cl−: 1 creatine, and inhibited by ouabain and iodoacetic acid. The kinetic study revealed a Km for creatine of 29 μm. [14C]Creatine uptake was efficiently antagonized by non‐labelled creatine, guanidinopropionic acid and cyclocreatine. More distant structural analogues of creatine, such as GABA, choline, glycine, β‐alanine, taurine and betaine, had no effect on intestinal creatine uptake, indicating a high substrate specificity of the creatine transporter. Consistent with these functional data, messenger RNA for CRT was detected only in the cells lining the intestinal villus. The sequences of partial clones, and of the full‐length cDNA clone, isolated from human and rat small intestine were identical to previously cloned CRT cDNAs. Immunological analysis revealed that CRT protein was mainly associated with the apical membrane of the enterocytes. This study reports for the first time that mammalian and avian enterocytes express CRT along the villus, where it mediates high‐affinity, Na+‐ and Cl−‐dependent, apical creatine uptake.
Pflügers Archiv: European Journal of Physiology | 1999
Reposo Ramírez-Lorca; Marisa Vizuete; J.L. Venero; Mati Revuelta; Josefina Cano; Ilundain A; Miriam Echevarría
Abstract Since specific proteins responsible for water transport (aquaporins, AQPs) have been identified in a great variety of tissues, we decided to study the presence of AQP3 in the gastrointestinal tract (GIT) of Wistar rats. Poly(A+) RNA was purified from the mucosa of the stomach, jejunum, ileum and colon, and gross detection of AQP3 mRNA was done by Northern blot analysis. In situ hybridization studies were carried out to precisely localize the distribution of this transcript. Sections of the different tissues were hybridized with @400-bp [35S]riboprobes. The results presented here demonstrate that AQP3 is expressed throughout the GIT, with its expression in the colon and ileum greater than that in the stomach. Immunohistochemistry experiments, using a polyclonal antibody against AQP3, revealed that AQP3 protein is present at the basolateral membrane of the epithelial cells lining the villus tip of the small intestine and colon. The finding of AQP3 in the intestinal epithelia strongly suggests that this protein functions as a pathway for water transport in this epithelium.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1998
Mark Donowitz; C. De La Horra; M. L. Calonge; I. S. Wood; Jane Dyer; S. M. Gribble; F. Sanchez De Medina; Chung-Ming Tse; Soraya P. Shirazi-Beechey; Ilundain A
We previously reported that mammalian small intestinal and colonic brush borders (BBs) contained both epithelial Na+/H+ exchangers NHE2 and NHE3. We now show that, in the avian (chicken) colon, NHE2 is the major functional isoform under basal conditions and when stimulated by a low-NaCl diet. Hubbard chickens were maintained for 2 wk on a high- or low-NaCl diet. After the chickens were killed, the ileum and colon were removed, and BBs were prepared by Mg2+ precipitation and 22Na and D-[14C]glucose uptake determined in the BB vesicles. NHE2 and NHE3 were separated by differential sensitivity to HOE-694 (NHE2 defined as Na+/H+ exchange inhibited by 50 microM HOE-694). Chickens on a low-Na+ diet have increased plasma aldosterone (10 vs. 207 pg/ml). On the high-NaCl diet, both NHE2 and NHE3 contributed to ileal and colonic apical Na+/H+ exchange, contributing equally in ileum, but NHE2 being the major component in colon (86%). Low-NaCl diet significantly increased ileal and colonic BB Na+/H+ exchange; the increase in BB Na+/H+ exchange in both ileum and colon was entirely due to an increase in NHE2 with no change in NHE3 activity. In contrast, low-NaCl diet decreased ileal and colonic Na+-dependent D-glucose uptake. Western analysis showed that low-Na+ diet increased the amount of NHE2 in the ileal and colonic BB and decreased the amount of ileal Na+-dependent glucose transporter SGLT1. Both NHE2 and NHE3 were present in the apical but not basolateral membranes (BLM) of ileal and colonic epithelial cells. In summary, 1) NHE2 and NHE3 are both present in the BB and not BLM of chicken ileum and colon; 2) NHE2 is the major physiological colonic BB Na+/H+ exchanger under basal conditions; 3) low-NaCl diet, which increases plasma aldosterone, increases ileal and colonic BB Na+/H+ exchange and decreases Na+-dependent D-glucose uptake; 4) the stimulation of colonic BB Na+/H+ exchange is due to increased activity and amount of NHE2; and 5) the inhibition of ileal D-glucose uptake is associated with a decrease in SGLT1 amount. NHE2 is the major chicken colonic BB Na+/H+ exchanger.
The Journal of Membrane Biology | 2002
J.M. Durán; María J. Peral; M.L. Calonge; Ilundain A
The carnitine transporter OCTN2 is responsible for the renal reabsorption of filtered L-carnitine. However, there is controversy regarding the intestinal L-carnitine transport mechanism(s). In this study, the characteristics of L-carnitine transport in both, isolated chicken enterocytes and brush-border membrane vesicles (BBMV) were studied. In situ hybridization was also performed in chicken small intestine. Chicken enterocytes maintain a steady-state L-carnitine gradient of 5 to 1 and 90% of the transported L-carnitine remains in a readily diffusive form. After 5 min, L-Carnitine uptake into BBMV overshot the equilibrium value by a factor of 2.5. Concentrative L-carnitine transport is Na+-, membrane voltage-and pH-dependent, has a high affinity for L-carnitine (Km 26 - 31 microM ) and a 1:1 Na+: L-carnitine stoichiometry. L-Carnitine uptake into either enterocytes or BBMV was inhibited by excess amount of cold L-carnitine > D-carnitine = acetyl-L-carnitine = gamma-butyrobetaine > palmitoyl-L-carnitine > betaine > TEA, whereas alanine, histidine, GABA or choline were without significant effect. In situ hybridization studies revealed that only the cells lining the intestinal villus expressed OCTN2 mRNA. This is the first demonstration of the operation of a Na+/L-carnitine cotransport system in the apical membrane of enterocytes. This transporter has properties similar to those of OCTN2.
Journal of Cellular Physiology | 2005
J.M. Durán; María J. Peral; M.L. Calonge; Ilundain A
L‐carnitine transport has been measured in enterocytes and basolateral membrane vesicles (BLMV) isolated from chicken intestinal epithelia. In the nominally Na+‐free conditions chicken enterocytes take up L‐carnitine until the cell to medium L‐carnitine ratio is 1. This uptake was inhibited by L‐carnitine, D‐carnitine, γ‐butyrobetaine, acetylcarnitine, tetraethylammonium (TEA), and betaine. L‐3H‐carnitine uptake into BLMV showed no overshoot, and it was (i) Na+‐independent, (ii) trans‐stimulated by intravesicular L‐carnitine, and (iii) cis‐inhibited by TEA and cold L‐carnitine. L‐3H‐carnitine efflux from L‐3H‐carnitine preloaded enterocytes was also Na+‐independent, and trans‐stimulated by L‐carnitine, D‐carnitine, γ‐butyrobetaine, acetylcarnitine, TEA, and betaine. Both, uptake and efflux of L‐carnitine were inhibited by verapamil and unaffected by either extracellular pH or palmitoyl‐L‐carnitine. RT‐PCR with specific primers for the mouse OCTN3 transporter revealed the existence of OCTN3 mRNA in mouse intestine, which was confirmed by in situ hybridization studies. Immunohystochemical analysis showed that OCTN3 protein was mainly associated with the basolateral membrane of rat and chicken enterocytes, whereas OCTN2 was detected at the apical membrane. In conclusion, the results demonstrate for the first time that (i) mammalian small intestine expresses OCTN3 mRNA along the villus and (ii) that OCTN3 protein is located in the basolateral membrane. They also suggest that OCTN3 could mediate the passive, Na+ and pH‐independent L‐carnitine transport activity measured in the three experimental conditions.
Neuroscience | 2010
María J. Peral; María D. Vázquez-Carretero; Ilundain A
Creatine is involved in brain ATP homeostasis and it may also act as neurotransmitter. Creatine transport was measured in synaptosomes obtained from the diencephalon and telencephalon of suckling and 2 month-old rats. Synaptosomes accumulate [(14)C]-creatine and this accumulation was Na(+)- and Cl(-)-dependent and inhibited by high external K(+). The latter suggests that the uptake process is electrogenic. The kinetic study revealed a K(m) for creatine of 8.7 microM. A 100-fold excess of either non-labelled creatine or guanidinopropionic acid abolished NaCl/creatine uptake, whereas GABA uptake was minimally modified, indicating a high substrate specificity of the creatine transporter. The levels of NaCl/creatine transporter (CRT) activity and those of the 4.2 kb CRT transcript (Northerns) were higher in the diencephalon than in the telencephalon, whereas the 2.7 kb transcript levels were similar in both brain regions and lower than those of the 4.2 kb. These observations suggest that the 4.2 kb transcript may code for the functional CRT. CRT activity and mRNA levels were similar in suckling and adult rats. To our knowledge the current results constitute the first description of the presence of a functional CRT in the axon terminal membrane that may serve to recapture the creatine released during the synapsis.
Experimental Physiology | 2010
Pablo García-Miranda; María J. Peral; Ilundain A
Expression of reelin, reelin receptors [apolipoprotein E receptor 2 (ApoER2) and very low density lipoprotein receptor (VldlR)] and the Disabled‐1 (Dab1) protein was investigated in rat intestinal mucosa. Intestinal reelin and Dab1 mRNA levels were maximal in the early stages of life, reaching adult levels in 1‐month‐old rats. Expression of reelin mRNA was restricted to fibroblasts, whereas mRNAs of Dab1, ApoER2, VldlR and integrins α3 and β1 were observed in enterocytes, crypts and fibroblasts. Reelin protein was only observed in isolated intestinal fibroblasts and in a cell layer subjacent to the villus epithelium, which seems to be composed of myofibroblasts because it also reacted to α‐smooth muscle actin. The Disabled‐1 and VldlR protein signals were detected in the crypt and villus cells, and they were particularly abundant in the terminal web domain of the enterocytes. The ApoER2 protein signal was detected in the upper half of the villi but not in the crypts. This is the first report showing that rat intestinal mucosa expresses the reelin–Disabled‐1 signalling system.
Mechanisms of Ageing and Development | 2005
María J. Peral; M. Gálvez; M.L. Soria; Ilundain A
Phosphocreatine is an energy buffer and transducer in the heart, the brain and the skeletal muscle. Recently, we have demonstrated the presence of the Na+/Cl-/creatine transporter at the apical membrane of the small intestinal epithelium. Herein the ontogeny and segmental distribution of rat intestinal creatine transport activity are investigated. [14C]-Creatine uptake was measured in the jejunum and ileum of 16 day gestation foetuses, newborn, suckling, weaning, 1-, 2-, 7- and 12-month-old (adult) rats. Creatine content in amniotic fluid, in rat and commercial milk and in rat chow, was measured by HPLC. NaCl-dependent creatine uptake was maximal in newborn rats and, in all the ages tested, higher in the ileum than in the jejunum. In the latter, NaCl-dependent creatine uptake was undetectable after weaning. Kinetic studies revealed that the jejunum and ileum have the same creatine uptake system, and that maturation decreases its Vmax but not the apparent Km. Maintenance of the pups on a commercial milk diet supplemented with creatine prevented the ileal periweaning decline in creatine uptake activity, but not that in the jejunum. In 1-month-old rats, supplementation with creatine increased ileal, but not jejunal, creatine uptake. The results demonstrate for the first time that: (i) creatine uptake along the length of the small intestine is mediated by the same transport system, (ii) the activity of this transport system changes in a specific manner with maturation and (iii) these changes appear to be genetically programmed and controlled by the intestinal creatine content.
Biochimica et Biophysica Acta | 2001
M.C de la Horra; Mercedes Cano; María J. Peral; M. García-Delgado; J.M. Durán; M.L. Calonge; Ilundain A
The presence of a Na(+)/D-mannose cotransport activity in brush-border membrane vesicles (BBMV), isolated from either rat small intestine or rat kidney cortex, is examined. In the presence of an electrochemical Na(+) gradient, but not in its absence, D-mannose was transiently accumulated by the BBMV. D-Mannose uptake into the BBMV was energized by both the electrical membrane potential and the Na(+) chemical gradient. D-Mannose transport vs. external D-mannose concentration can be described by an equation that represents a superposition of a saturable component and another component that cannot be saturated up to 50 microM D-mannose. D-Mannose uptake was inhibited by D-mannose >> D-glucose>phlorizin, whereas for alpha-methyl glucopyranoside the order was D-glucose=phlorizin >> D-mannose. The initial rate of D-mannose uptake increased as the extravesicular Na(+) concentration increased, with a Hill coefficient of 1, suggesting that the Na(+):D-mannose cotransport stoichiometry is 1:1. It is concluded that both rat intestinal and renal apical membrane have a concentrative, saturable, electrogenic and Na(+)-dependent D-mannose transport mechanism, which is different from SGLT1.