Ilya Digel
RWTH Aachen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ilya Digel.
Biophysical Journal | 2008
Andreas Stadler; Ilya Digel; Gerhard Artmann; J. P. Embs; Giuseppe Zaccai; Georg Büldt
A transition in hemoglobin behavior at close to body temperature has been discovered recently by micropipette aspiration experiments on single red blood cells (RBCs) and circular dichroism spectroscopy on hemoglobin solutions. The transition temperature was directly correlated to the body temperatures of a variety of species. In an exploration of the molecular basis for the transition, we present neutron scattering measurements of the temperature dependence of hemoglobin dynamics in whole human RBCs in vivo. The data reveal a change in the geometry of internal protein motions at 36.9 degrees C, at human body temperature. Above that temperature, amino acid side-chain motions occupy larger volumes than expected from normal temperature dependence, indicating partial unfolding of the protein. Global protein diffusion in RBCs was also measured and the findings compared favorably with theoretical predictions for short-time self-diffusion of noncharged hard-sphere colloids. The results demonstrated that changes in molecular dynamics in the picosecond time range and angstrom length scale might well be connected to a macroscopic effect on whole RBCs that occurs at body temperature.
Journal of the American Chemical Society | 2008
Andreas Stadler; J. P. Embs; Ilya Digel; Gerhard Artmann; Tobias Unruh; Georg Büldt; Giuseppe Zaccai
The dynamics of water in human red blood cells was measured with quasielastic incoherent neutron scattering in the temperature range between 290 and 320 K. Neutron spectrometers with time resolutions of 40, 13, and 7 ps were combined to cover time scales of bulk water dynamics to reduced mobility interfacial water motions. A major fraction of approximately 90% of cell water is characterized by a translational diffusion coefficient similar to bulk water. A minor fraction of approximately 10% of cellular water exhibits reduced dynamics. This slow water fraction was attributed to dynamically bound water on the surface of hemoglobin which accounts for approximately half of the hydration layer.
Biophysical Journal | 2009
Andreas Stadler; Ilya Digel; J. P. Embs; Tobias Unruh; Moeava Tehei; Giuseppe Zaccai; Georg Büldt; Gerhard Artmann
A transition in hemoglobin (Hb), involving partial unfolding and aggregation, has been shown previously by various biophysical methods. The correlation between the transition temperature and body temperature for Hb from different species, suggested that it might be significant for biological function. To focus on such biologically relevant human Hb dynamics, we studied the protein internal picosecond motions as a response to hydration, by elastic and quasielastic neutron scattering. Rates of fast diffusive motions were found to be significantly enhanced with increasing hydration from fully hydrated powder to concentrated Hb solution. In concentrated protein solution, the data showed that amino acid side chains can explore larger volumes above body temperature than expected from normal temperature dependence. The body temperature transition in protein dynamics was absent in fully hydrated powder, indicating that picosecond protein dynamics responsible for the transition is activated only at a sufficient level of hydration. A collateral result from the study is that fully hydrated protein powder samples do not accurately describe all aspects of protein picosecond dynamics that might be necessary for biological function.
Medical & Biological Engineering & Computing | 2005
Ilya Digel; A. Temiz Artmann; K. Nishikawa; M. Cook; E. Kurulgan; Gerhard M. Artmann
Air purification by plasma-generated cluster ions (PCIs) relies on a novel technology producing hydrated positive and negative ions. Phenomenological tests have shown strong evidence of lethal effects of the PCIs on various micro-organisms. However, the mechanisms of PCI action are still widely unknown. The aim was thus to test the bactericidal efficacy of PCI technology on common indoor micro-organisms and to explore possible PCI mechanisms of action. According to time/dose-dependent experiments with Staphylococcus, Enterococcus, Micrococcus and Bacillus, the inhibiting effects became apparent within the first few minutes of PCI exposure and led to an irreversible 99.9% destruction within the following 2–8 h of exposure. The destructive effect of the PCIs corresponded to membrane damage of the bacteria. Use of the techniques of both SDS PAGE and 2D PAGE revealed changes in the bacterial surface protein composition induced by the PCIs. In contrast, neither DNA nor cytoplasm protein damage was detected electrophoretically. The antimicrobial action of the PCIs seems to occur because of chemical modification of the surface proteins of bacteria. In situ hydroxyl radical formation on the surface of bacteria was proposed as the leading mechanism of the protein damage caused by the PCIs. At the same time, DNA damage seems not to be involved in the antibacterial action of the PCIs. The data obtained would broaden the knowledge concerning the antibacterial effects of air-born plasmagenerated cluster ions and help to produce more efficient air-cleaning devices.
Journal of the Royal Society Interface | 2012
Andreas Stadler; Christopher J. Garvey; A. Bocahut; Sophie Sacquin-Mora; Ilya Digel; G. J. Schneider; F. Natali; Gerhard Artmann; Giuseppe Zaccai
Thermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein resilience, melting temperature and average body temperature of the different species on the 0.1 ns time scale. Molecular forces appeared to be adapted to permit conformational fluctuations with a root mean square displacement close to 1.2 Å at the corresponding average body temperature of the endotherms. Strong forces within crocodile Hb maintain the amplitudes of motion within a narrow limit over the entire temperature range in which the animal lives. In fully hydrated powder samples of human and chicken, Hb mean square displacements and effective force constants on the 1 ns time scale showed no differences over the whole temperature range from 10 to 300 K, in contrast to the solution case. A complementary result of the study, therefore, is that one hydration layer is not sufficient to activate all conformational fluctuations of Hb in the pico- to nanosecond time scale which might be relevant for biological function. Coarse-grained Brownian dynamics simulations permitted to explore residue-specific effects. They indicated that temperature sensing of human and chicken Hb occurs mainly at residues lining internal cavities in the β-subunits.
Annals of Biomedical Engineering | 2004
Trzewik J; Artmann-Temiz A; P. Linder; Taylan Demirci; Ilya Digel; Gerhard Artmann
Fibroblast-populated collagen matrices provide a simplified tissue model for wound healing and development processes. A technology (CELLDRUM Technology) evaluating lateral mechanical tension in fibroblast-populated collagen matrices (tissue constructs) with a thickness of 1 mm was introduced. Defined mechanical boundary conditions together with the known number and orientation of the cells revealed precise data on the average tension exerted by a single cell. Circular cell-populated collagen gels were manufactured inside the CELLDRUM on top of a flexible membrane. The collagen matrix was then excited by a sound pulse. The resulting resonance oscillation was monitored by a laser-based deflection sensor and frequency and damping were analyzed giving information on mechanical properties of the tissue construct. Several evaluation experiments were performed. Calf serum enhanced contractile forces of fibroblasts dose dependently. After the gels were treated with cytochalasin D for 24 h, the cell forces were reduced by 42% of control. The remaining tension was attributed to the extracellular matrix remodeling occurring during cell growth and to other cytoskeletal structures like microtubules and intermediate filaments. We also found that only after a few hours of culture fibroblast-seeded collagen gels began developing significant mechanical tension. A mechanical tension profile of proliferating fibroblasts in collagen gels over culture time was obtained.
Annals of Glaciology | 2014
Bernd Dachwald; Jill A. Mikucki; Slawek Tulaczyk; Ilya Digel; Clemens Espe; Marco Feldmann; Gero Francke; Julia Kowalski; Changsheng Xu
Abstract There is significant interest in sampling subglacial environments for geobiological studies, but they are difficult to access. Existing ice-drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. The IceMole is a maneuverable subsurface ice probe for clean in situ analysis and sampling of glacial ice and subglacial materials. The design is based on the novel concept of combining melting and mechanical propulsion. It can change melting direction by differential heating of the melting head and optional side-wall heaters. The first two prototypes were successfully tested between 2010 and 2012 on glaciers in Switzerland and Iceland. They demonstrated downward, horizontal and upward melting, as well as curve driving and dirt layer penetration. A more advanced probe is currently under development as part of the Enceladus Explorer (EnEx) project. It offers systems for obstacle avoidance, target detection, and navigation in ice. For the EnEx-IceMole, we will pay particular attention to clean protocols for the sampling of subglacial materials for biogeochemical analysis. We plan to use this probe for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, with return of a subglacial brine sample.
Journal of Biophysics | 2008
Ilya Digel; P. Kayser; Gerhard M. Artmann
Since thermal gradients are almost everywhere, thermosensation could represent one of the oldest sensory transduction processes that evolved in organisms. There are many examples of temperature changes affecting the physiology of living cells. Almost all classes of biological macromolecules in a cell (nucleic acids, lipids, proteins) can present a target of the temperature-related stimuli. This review discusses some features of different classes of temperature-sensing molecules as well as molecular and biological processes that involve thermosensation. Biochemical, structural, and thermodynamic approaches are applied in the paper to organize the existing knowledge on molecular mechanisms of thermosensation. Special attention is paid to the fact that thermosensitive function cannot be assigned to any particular functional group or spatial structure but is rather of universal nature. For instance, the complex of thermodynamic, structural, and functional features of hemoglobin family proteins suggests their possible accessory role as “molecular thermometers”.
BMC Biophysics | 2013
Rasha Bassam; Ilya Digel; Juergen Hescheler; Ayseguel Temiz Artmann; Gerhard Artmann
Background and objectiveRegulating protein function in the cell by small molecules, provide a rapid, reversible and tunable tool of metabolic control. However, due to its complexity the issue is poorly studied so far. The effects of small solutes on protein behavior can be studied by examining changes of protein secondary structure, in its hydrodynamic radius as well as its thermal aggregation. The study aim was to investigate effects of adenosine-5’-triphosphate (ATP), spermine NONOate (NO donor) as well as sodium/potassium ions on thermal aggregation of albumin and hemoglobin. To follow aggregation of the proteins, their diffusion coefficients were measured by quasi-elastic light scattering (QELS) at constant pH (7.4) in the presence of solutes over a temperature range from 25°C to 80°C.Results and discussion1) Spermine NONOate persistently decreased the hemoglobin aggregation temperature Tairrespectively of the Na+/K+ environment, 2) ATP alone had no effect on the protein’s thermal stability but it facilitated protein’s destabilization in the presence of spermine NONOate and 3) mutual effects of ATP and NO were strongly influenced by particular buffer ionic compositions.ConclusionThe ATP effect on protein aggregation was ambiguous: ATP alone had no effect on the protein’s thermal stability but it facilitated protein’s destabilization in the presence of nitric oxide. The magnitude and direction of the observed effects strongly depended on concentrations of K+ and Na+ in the solution.
Advances in Experimental Medicine and Biology | 2011
Ilya Digel
Temperature sensing is essential for the survival of living organisms. Since thermal gradients are almost everywhere, thermoreception could represent one of the oldest sensory transduction processes that evolved in organisms. There are many examples of temperature changes affecting the physiology of living cells. Almost all classes of biological macromolecules in a cell (nucleic acids, lipids, proteins) can serve as a target of the temperature-related stimuli. This review is devoted to some common features of different classes of temperature-sensing molecules as well as molecular and biological processes involved in thermosensation. Biochemical, structural and thermodynamic approaches are discussed in order to overview the existing knowledge on molecular mechanisms of thermosensation.