Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilya Gelfand is active.

Publication


Featured researches published by Ilya Gelfand.


Nature | 2013

Sustainable bioenergy production from marginal lands in the US Midwest

Ilya Gelfand; Ritvik Sahajpal; Xuesong Zhang; Roberto C. Izaurralde; Katherine L. Gross; G. P. Robertson

Legislation on biofuels production in the USA and Europe is directing food crops towards the production of grain-based ethanol, which can have detrimental consequences for soil carbon sequestration, nitrous oxide emissions, nitrate pollution, biodiversity and human health. An alternative is to grow lignocellulosic (cellulosic) crops on ‘marginal’ lands. Cellulosic feedstocks can have positive environmental outcomes and could make up a substantial proportion of future energy portfolios. However, the availability of marginal lands for cellulosic feedstock production, and the resulting greenhouse gas (GHG) emissions, remains uncertain. Here we evaluate the potential for marginal lands in ten Midwestern US states to produce sizeable amounts of biomass and concurrently mitigate GHG emissions. In a comparative assessment of six alternative cropping systems over 20 years, we found that successional herbaceous vegetation, once well established, has a direct GHG emissions mitigation capacity that rivals that of purpose-grown crops (−851 ± 46 grams of CO2 equivalent emissions per square metre per year (gCO2e m−2 yr−1)). If fertilized, these communities have the capacity to produce about 63 ± 5 gigajoules of ethanol energy per hectare per year. By contrast, an adjacent, no-till corn–soybean–wheat rotation produces on average 41 ± 1 gigajoules of biofuel energy per hectare per year and has a net direct mitigation capacity of −397 ± 32 gCO2e m−2 yr−1; a continuous corn rotation would probably produce about 62 ± 7 gigajoules of biofuel energy per hectare per year, with 13% less mitigation. We also perform quantitative modelling of successional vegetation on marginal lands in the region at a resolution of 0.4 hectares, constrained by the requirement that each modelled location be within 80 kilometres of a potential biorefinery. Our results suggest that such vegetation could produce about 21 gigalitres of ethanol per year from around 11 million hectares, or approximately 25 per cent of the 2022 target for cellulosic biofuel mandated by the US Energy Independence and Security Act of 2007, with no initial carbon debt nor the indirect land-use costs associated with food-based biofuels. Other regional-scale aspects of biofuel sustainability, such as water quality and biodiversity, await future study.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production

Ilya Gelfand; Terenzio Zenone; Poonam Jasrotia; Jiquan Chen; Stephen K. Hamilton; G. Philip Robertson

Over 13 million ha of former cropland are enrolled in the US Conservation Reserve Program (CRP), providing well-recognized biodiversity, water quality, and carbon (C) sequestration benefits that could be lost on conversion back to agricultural production. Here we provide measurements of the greenhouse gas consequences of converting CRP land to continuous corn, corn–soybean, or perennial grass for biofuel production. No-till soybeans preceded the annual crops and created an initial carbon debt of 10.6 Mg CO2 equivalents (CO2e)·ha−1 that included agronomic inputs, changes in C stocks, altered N2O and CH4 fluxes, and foregone C sequestration less a fossil fuel offset credit. Total debt, which includes future debt created by additional changes in soil C stocks and the loss of substantial future soil C sequestration, can be constrained to 68 Mg CO2e·ha−1 if subsequent crops are under permanent no-till management. If tilled, however, total debt triples to 222 Mg CO2e·ha−1 on account of further soil C loss. Projected C debt repayment periods under no-till management range from 29 to 40 y for corn–soybean and continuous corn, respectively. Under conventional tillage repayment periods are three times longer, from 89 to 123 y, respectively. Alternatively, the direct use of existing CRP grasslands for cellulosic feedstock production would avoid C debt entirely and provide modest climate change mitigation immediately. Incentives for permanent no till and especially permission to harvest CRP biomass for cellulosic biofuel would help to blunt the climate impact of future CRP conversion.


Environmental Science & Technology | 2010

Energy efficiency of conventional, organic, and alternative cropping systems for food and fuel at a site in the U.S. Midwest.

Ilya Gelfand; S. S. Snapp; G. P. Robertson

The prospect of biofuel production on a large scale has focused attention on energy efficiencies associated with different agricultural systems and production goals. We used 17 years of detailed data on agricultural practices and yields to calculate an energy balance for different cropping systems under both food and fuel scenarios. We compared four grain and one forage systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically based (organic) practices, and (5) continuous alfalfa (Medicago sativa). We compared energy balances under two scenarios: all harvestable biomass used for food versus all harvestable biomass used for biofuel production. Among the annual grain crops, average energy costs of farming for the different systems ranged from 4.8 GJ ha(-1) y(-1) for the organic system to 7.1 GJ ha(-1) y(-1) for the conventional; the no-till system was also low at 4.9 GJ ha(-1) y(-1) and the low-chemical input system intermediate (5.2 GJ ha(-1) y(-1)). For each system, the average energy output for food was always greater than that for fuel. Overall energy efficiencies ranged from output:input ratios of 10 to 16 for conventional and no-till food production and from 7 to 11 for conventional and no-till fuel production, respectively. Alfalfa for fuel production had an efficiency similar to that of no-till grain production for fuel. Our analysis points to a more energetically efficient use of cropland for food than for fuel production and large differences in efficiencies attributable to management, which suggests multiple opportunities for improvement.


Gcb Bioenergy | 2016

Nitrous oxide emissions during establishment of eight alternative cellulosic bioenergy cropping systems in the North Central United States

Lawrence G. Oates; David S. Duncan; Ilya Gelfand; Neville Millar; G. Philip Robertson; Randall D. Jackson

Greenhouse gas (GHG) emissions from soils are a key sustainability metric of cropping systems. During crop establishment, disruptive land‐use change is known to be a critical, but under reported period, for determining GHG emissions. We measured soil N2O emissions and potential environmental drivers of these fluxes from a three‐year establishment‐phase bioenergy cropping systems experiment replicated in southcentral Wisconsin (ARL) and southwestern Michigan (KBS). Cropping systems treatments were annual monocultures (continuous corn, corn–soybean–canola rotation), perennial monocultures (switchgrass, miscanthus, and poplar), and perennial polycultures (native grass mixture, early successional community, and restored prairie) all grown using best management practices specific to the system. Cumulative three‐year N2O emissions from annuals were 142% higher than from perennials, with fertilized perennials 190% higher than unfertilized perennials. Emissions ranged from 3.1 to 19.1 kg N2O‐N ha−1 yr−1 for the annuals with continuous corn > corn–soybean–canola rotation and 1.1 to 6.3 kg N2O‐N ha−1 yr−1 for perennials. Nitrous oxide peak fluxes typically were associated with precipitation events that closely followed fertilization. Bayesian modeling of N2O fluxes based on measured environmental factors explained 33% of variability across all systems. Models trained on single systems performed well in most monocultures (e.g., R2 = 0.52 for poplar) but notably worse in polycultures (e.g., R2 = 0.17 for early successional, R2 = 0.06 for restored prairie), indicating that simulation models that include N2O emissions should be parameterized specific to particular plant communities. Our results indicate that perennial bioenergy crops in their establishment phase emit less N2O than annual crops, especially when not fertilized. These findings should be considered further alongside yield and other metrics contributing to important ecosystem services.


Gcb Bioenergy | 2016

CO2 uptake is offset by CH4 and N2O emissions in a poplar short-rotation coppice

Terenzio Zenone; Donatella Zona; Ilya Gelfand; Bert Gielen; Marta Camino-Serrano; R. Ceulemans

The need for renewable energy sources will lead to a considerable expansion in the planting of dedicated fast‐growing biomass crops across Europe. These are commonly cultivated as short‐rotation coppice (SRC), and currently poplar (Populus spp.) is the most widely planted. In this study, we report the greenhouse gas (GHG) fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) measured using eddy covariance technique in an SRC plantation for bioenergy production. Measurements were made during the period 2010–2013, that is, during the first two rotations of the SRC. The overall GHG balance of the 4 years of the study was an emission of 1.90 (±1.37) Mg CO2eq ha−1; this indicated that soil trace gas emissions offset the CO2 uptake by the plantation. CH4 and N2O contributed almost equally to offset the CO2 uptake of −5.28 (±0.67) Mg CO2eq ha−1 with an overall emission of 3.56 (±0.35) Mg CO2eq ha−1 of N2O and of 3.53 (±0.85) Mg CO2eq ha−1 of CH4. N2O emissions mostly occurred during one single peak a few months after the site was converted to SRC; this peak comprised 44% of the total N2O loss during the two rotations. Accurately capturing emission events proved to be critical for deriving correct estimates of the GHG balance. The nitrogen (N) content of the soil and the water table depth were the two drivers that best explained the variability in N2O and CH4, respectively. This study underlines the importance of the ‘non‐CO2 GHGs’ on the overall balance. Further long‐term investigations of soil trace gas emissions should monitor the N content and the mineralization rate of the soil, as well as the microbial community, as drivers of the trace gas emissions.


Ecosystems | 2016

Ecosystem Water-Use Efficiency of Annual Corn and Perennial Grasslands: Contributions from Land-Use History and Species Composition

Michael Abraha; Ilya Gelfand; Stephen K. Hamilton; Changliang Shao; Yahn Jauh Su; G. Philip Robertson; Jiquan Chen

Carbon and water exchanges between vegetated land surfaces and the atmosphere reveal the ecosystem-scale water-use efficiency (WUE) of primary production. We examined the interacting influence of dominant plant functional groups (C3 and C4) and land-use history on WUEs of annual corn and perennial (restored prairie, switchgrass and smooth brome grass) grasslands in the US Midwest from 2010 through 2013. To this end, we determined ecosystem-level (eWUE) and intrinsic (iWUE) WUEs using eddy covariance and plant carbon isotope ratios, respectively. Corn, switchgrass, and restored prairie were each planted on lands previously managed as grasslands under the USDA Conservation Reserve Program (CRP), or as corn/soybean rotation under conventional agriculture (AGR), while a field of smooth brome grass remained in CRP management. The iWUEs of individual C3 plant species varied little across years. Corn had the highest (4.1) and smooth brome grass the lowest (2.3) overall eWUEs (g C kg−1 H2O) over the 4 years. Corn and switchgrass did not consistently show a significant difference in seasonal eWUE between former CRP and AGR lands, whereas restored prairie had significantly higher seasonal eWUE on former AGR than on former CRP land due to a greater shift from C3 to C4 species on the former AGR land following a drought in 2012. Thus, differences in grassland eWUE were largely determined by the relative dominance of C3 and C4 species within the plant communities. In this humid temperate climate with common short-term and occasional long-term droughts, it is likely that mixed grasslands will become increasingly dominated by C4 grasses over time, with higher yields and eWUE than C3 plants. These results inform models of the interaction between carbon and water cycles in grassland ecosystems under current and future climate and management scenarios.


Gcb Bioenergy | 2018

Environmental factors function as constraints on soil nitrous oxide fluxes in bioenergy feedstock cropping systems

David S. Duncan; Lawrence G. Oates; Ilya Gelfand; Neville Millar; G. Philip Robertson; Randall D. Jackson

Nitrous oxide (N2O) is a potent greenhouse gas and major component of the net global warming potential of bioenergy feedstock cropping systems. Numerous environmental factors influence soil N2O production, making direct correlation difficult to any one factor of N2O fluxes under field conditions. We instead employed quantile regression to evaluate whether soil temperature, water‐filled pore space (WFPS), and concentrations of soil nitrate ( NO3− ) and ammonium ( NH4+ ) determined upper bounds for soil N2O flux magnitudes. We collected data over 6 years from a range of bioenergy feedstock cropping systems including no‐till grain crops, perennial warm‐season grasses, hybrid poplar, and polycultures of tallgrass prairie species each with and without nitrogen (N) addition grown at two sites. The upper bounds for soil N2O fluxes had a significant and positive correlation with all four environmental factors, although relatively large fluxes were still possible at minimal values for nearly all factors. The correlation with NH4+ was generally weaker, suggesting it is less important than NO3− in driving large fluxes. Quantile regression slopes were generally lower for unfertilized perennials than for other systems, but this may have resulted from a perpetual state of nitrogen limitation, which prevented other factors from being clear constraints. This framework suggests efforts to reduce concentrations of NO3− in the soil may be effective at reducing high‐intensity periods—”hot moments”—of N2O production.


Archive | 2015

Aggregate Annual Fluxes

Lawrence G. Oates; David S. Duncan; Ilya Gelfand; Neville Millar; G. Philip Robertson; Randall D. Jackson

Daily fluxes were aggregated at the plot level over a calendar year. Details of aggregation are given in the paper.


Biogeosciences | 2007

Biogeochemical factors contributing to enhanced carbon storage following afforestation of a semi-arid shrubland

José M. Grünzweig; Ilya Gelfand; Y. Fried; Dan Yakir


Soil Biology & Biochemistry | 2008

Influence of nitrite accumulation in association with seasonal patterns and mineralization of soil nitrogen in a semi-arid pine forest

Ilya Gelfand; Dan Yakir

Collaboration


Dive into the Ilya Gelfand's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiquan Chen

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Neville Millar

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Yakir

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David S. Duncan

Great Lakes Bioenergy Research Center

View shared research outputs
Top Co-Authors

Avatar

Lawrence G. Oates

Great Lakes Bioenergy Research Center

View shared research outputs
Top Co-Authors

Avatar

Randall D. Jackson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jaap van Rijn

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge